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Abstract—Modern reinforcement learning algorithms can learn
solutions to increasingly difficult control problems while at the
same time reduce the amount of prior knowledge needed for
their application. A remaining challenge is the definition of
reward schemes that facilitate exploration without biasing the
solution or requiring expensive instrumentation. In this paper
we focus on a setting in which goal tasks are defined as sparse
rewards and exploration is facilitated via agent-internal auxiliary
tasks. We introduce simple sensor intentions (SSIs) as a generic
way to define auxiliary tasks that reduces the amount of prior
knowledge required to define suitable rewards. Also, SSIs can
be computed from raw sensor streams and thus do not require
state estimation. We demonstrate that a learning system based
on SSIs can solve complex robotic tasks: We show that a
robotic arm can learn to grasp and lift arbitrary objects and
solve a Ball-in-a-Cup task from scratch, even when only raw
sensor streams are used for both controller input and in the
auxiliary reward definition. A video showing the results can
be found at https://deepmind.com/research/publications/Simple-
Sensor-Intentions-for-Exploration.

I. INTRODUCTION

A step stone on the path towards general AI is to minimize
the amount of prior knowledge needed to set up learning sys-
tems. Ideally, we would like to identify principles that transfer
to a variety of domains without task-specific adjustments.
A remaining challenge is the definition of reward schemes
that appropriately indicate task success, facilitate exploration
without biasing the solution, and that can be implemented
on robotics systems without expensive instrumentation. Sparse
reward functions mitigate the bias on the final solution [11],
however, an agent starting from scratch with a naive explo-
ration strategy will most likely never encounter any learning
signal. To this end Scheduled Auxiliary Control (SAC-X) [12]
introduces the use of auxiliary rewards, that help exploring
the environment. In the original work, the auxiliary tasks
are defined with semantic understanding of the environment
in mind – an important insight of [12] however is that the
exact definition of auxiliary tasks can vary, as long as they
jointly allow to collect rich enough data such that learning
of the main task can proceed. In this work we make a step
towards a more generic approach for defining auxiliary tasks,
that reduces the need for task-specific semantic interpretation
of sensors: A fundamental principle to enable exploration is
to learn auxiliary behaviours that deliberately change sensor
responses. We introduce a generic way to implement this
concept and show that SSIs can aid exploration in a variety
of robotic domains.

Fig. 1. Rethink Sawyer robotic arm with a Robotiq 2F-85 parallel gripper
(left) and a custom made Ball-and-Cup attachment (right).

II. SIMPLE SENSOR INTENTIONS

In the absence of an external reward signal, a sensible
exploration strategy can be formed by learning policies that
deliberately cause an effect on the observed sensor values.
SSIs propose a generic way to implement this principle in
the multi-task agent framework SAC-X [12]. SSIs are derived
from raw sensor observations in two steps:

First step: We derive a scalar (virtual) sensor response by map-
ping an observation to a scalar value. For scalar observations
this mapping can be the identity function, while other sensors
might require pre-processing (e.g. camera images).

Second step: We define an SSI intention either by rewarding
the agent for reaching a specific target sensor response, or for
incurring a specific, directed change in the sensor response.

Both reward schemes do not require a semantic understanding
of the environment, however a change in a sensor response is
indicative for some change in the environment – by learning a
policy that deliberately causes this change (a SSI) we obtain
a natural way of encouraging diverse exploration.

For handling camera images, we propose to transform a
pixel observation into a small amount of sensor responses by
aggregating statistics of an image’s spatial color distribution.
As illustrated in Fig. 2, we threshold the image and calculate
the mean location of the resulting binary mask along each of
the image’s axes, which we subsequently use as sensor values.

Fig. 2. Transformation used for deriving scalar responses from images.
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Fig. 3. ‘Lift’ learned from pixels in simulations.

III. LEARNING SSIS FOR ACTIVE EXPLORATION

In this work, we employ SAC-X to learn SSIs. The set of
tasks is given by the reward functions for each of the SSIs
that we want to learn, as well as the sparse, externally defined
goal reward. The transition distribution, for which the policy
and Q-function are learned, is obtained from a replay buffer
that is filled by executing both the policy for the goal task
as well as all other available exploration SSIs. Episodes are
divided into multiple sequences, with a scheduler choosing a
task-policy to execute for each sequence (see [12]).

IV. EXPERIMENTS

We apply SSIs in the context of robotic experiments in
simulation and on a real robot. We show, that by using SSIs,
complex manipulation tasks can be solved: grasping and lifting
objects, stacking two objects and solving a Ball-in-a-Cup task
end-to-end from raw pixels. In all experiments we employ a
Rethink Sawyer robotic arm as shown in Fig. 1. The goal
reward is sparse (i.e. binary) in all setups. The agent’s ob-
servations are proprioceptive sensors and raw camera images.
The action space for manipulation is five dimensional and uses
continuous cartesian velocities, while Ball-in-a-Cup uses four
dimensional continuous joint velocities (see [13]).

A. Learning to grasp and lift

Using appropriate SSIs, the agent successfully learns to
approach, grasp and eventually lift an object, which is very
unlikely to happen, if only the sparse task reward is used (see
Fig. 3). In addition, we highlight the following ablations:

1) Learning success does not depend on a particular cam-
era pose: We find that while varying the camera pose has an
influence on learning speed, successful learning is possible for
a wide variety of camera positions.

2) The SSI color channel does not necessarily need to
specify a single object: Even if multiple objects with the
same color are present in the scene or if (small) parts of the
background have the same color as the object, lifting can be
learned successfully.

3) One can use a much more general selection of the color
channel: Rewards for different color channels can be totalled
to form ‘aggregate SSIs’. Using this method, an agent can
learn to lift arbitrary colored objects placed in the workspace.

Fig. 4. ‘Lift’ learned from pixels on a real robot.

4) The SSI method is not restricted to pixels, but works
with a general set of (robot) sensors: SSIs can additionally
be applied to basic sensors like the touch sensor, the joint
angles or the joint velocities. In conjunction with SAC-Q we
can show that the ‘Lift’ task can be learned in a more general
setup with 22 auxiliary SSIs.

B. Learning to stack

Learning to stack poses additional challenges: The scene is
more complex since there are two objects, reward is given only
if one object is placed above the target object, and the target
object can move. Without SSIs the agent is not able to learn
the task but with SSIs, learning is possible from raw sensor
information and an external task reward only.

C. Ball-in-a-Cup

As an example of the generality of SSIs, we employ the
same set of SSIs used before, to learn the dynamic Ball-in-
a-Cup task [13]. Dynamic tasks in general exhibit additional
difficulties (e.g. timing or reaching and staying in possibly
unstable regimes of the configuration-space) and, as a result,
learning to catch the ball purely from pixels is out-of-reach
for an agent, that only employs the sparse catch reward. With
SSIs however, the agent can successfully learn the task.

V. RELATED WORK

Transfer from additional tasks has a long-standing history in
reinforcement learning to accelerate exploration and learning
[15, 10]. Auxiliary tasks have been investigated as manually
chosen to help in specific domains [12, 4, 8, 9, 3] and as
based on agent behaviour [1]. In comparison to methods using
auxiliary tasks mostly for representation shaping by sharing a
subset of network parameters across tasks [8, 9], SSIs share
data between tasks which directly uses additional tasks for
exploration. Recent work on diversity has demonstrated the
importance of the space used for skill discovery [14]. SSIs
provide a perspective on determining valuable task spaces
with limited human effort. Finding automated curricula to
accelerate learning gains relevance in this context [2, 7, 5, 6].
In this work, we rely on task scheduling similar to Riedmiller
et al. [12] in order to optimize the use of training time.



VI. CONCLUSION

Learning to deliberately change sensor responses is a
promising exploration principle in settings, where it is dif-
ficult or impossible to experience an external task reward
purely by chance. We introduce the concept of simple sensor
intentions (SSIs) that implements this principle in a generic
way within the SAC-X framework. Our approach requires
less prior knowledge than the broadly used shaping reward
formulation, that relies on task insight for the definition
and state estimation for the computation of rewards. In case
studies, we demonstrate the application of SSIs to various
robotic tasks showing, that SSIs are general – that no or only
minor adaptations between tasks are required – and that yet,
SSIs provide for meaningful exploration in various domains.

An extended version of the paper can be found at
https://arxiv.org/abs/2005.07541.
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