
Learning visual servo policies via planner cloning
Ulrich Viereck∗, Kate Saenko+, Robert Platt∗

∗Khoury College of Computer Sciences, Northeastern University; +Department of Computer Science, Boston University

Abstract—Learning control policies for visual servoing in
novel environments is an important problem. However, standard
model-free policy learning methods are slow to learn. This
paper explores planner cloning: using behavior cloning to learn
policies that mimic the behavior of a full-state motion planner
in simulation. We propose Penalized Q Cloning (PQC), a new
behavior cloning algorithm. We show that it outperforms several
baselines and ablations on some challenging problems involving
visual servoing in novel environments while avoiding obstacles.
Finally, we demonstrate that these policies can be transferred
effectively onto a real robotic platform, achieving approximately
an 87% success rate both in simulation and on a real robot.

I. INTRODUCTION

Visual servoing in novel environments is an important
problem. Whereas classical approaches to the problem [3, 1,
15] make strong assumptions about the environment, deep
learning methods solve these problems in more unstructured
settings [17, 9, 14, 5, 13, 16, 7, 8]. Standard model-free
reinforcement learning methods such as DQN [10], do poorly
because they treat this as an unstructured model-free problem.
Most current approaches to visual servoing in unstructured
domains involve some form of imitation learning or behavior
cloning [17, 9, 14, 5, 13, 16]. However, there are substantial
differences between these methods and their relative perfor-
mance is unclear.

Fig. 1. One of the visual servoing test
scenarios: Inserting a peg into a hole
with collision avoidance.

This work focuses on
a class of imitation learn-
ing approaches that we call
planner cloning, where the
expert is an approximately
optimal motion planner that
generates estimates of the
optimal value function and
optimal policy given full
state feedback. This infor-
mation is cloned onto a
value function or policy
over the observation space
(i.e. camera images) that
can be used at test time where full state feedback is unavail-
able.

The main contribution of this work is a new behavior
cloning algorithm that we call Penalized Q Cloning (PQC).
It has the following characteristics:

• It learns a value function using supervised value targets
provided by the planner, similar to AGGREVATE [11].

• It incorporates a penalty into the value targets for subop-
timal actions, similar to DQfD [2].

• For every experience, it updates the values for all feasible
actions from that state, not just the action experienced.

This algorithm differs from AGGREVATE because it in-
corporates the value penalties and from DQfD because it
uses supervised targets rather than TD targets. We compare
PQC with several baselines and algorithm ablations and show
that it outperforms all these variations on two challenging
visual servoing problems in novel cluttered environments (i.e.
Figure 1). The resulting policies achieve high success rates
(approximately 87%) on challenging visual servo tasks.

II. VISUAL SERVO PROBLEM

Problem Statement: We assume we are given a discrete
time system that includes a robotic end-effector, a camera,
randomly placed clutter and and random object in gripper
and target configuration. At the beginning of each episode the
agent must move an object grasped into a desired pose relative
to the environment. The agent must find a policy π : Z 7→ A
over the observation space that minimizes the expected time
to reach a goal state for the given system.

Train/test information asymmetry assumption: We assume
that the agent has access to a fully modeled MDP and
a simulator during training. During training, the simulator
produces state and simulated camera observations. At test time,
we assume that the agent does not observe the full state.
Instead, the agent only has access to camera observations
z ∈ Z.

III. PENALIZED Q CLONING (PQC)

Fig. 2. Illustration of full state
motion planning scenario.

In view of the train/test in-
formation asymmetry assumption,
notice that there are really two
relevant MDPs: 1) a fully mod-
eled MDP over the underlying
state space S; and 2) an unmod-
eled MDP over the observation
space Z. We want to find a pol-
icy for the unmodeled MDP, but
we can only plan in the modeled
MDP. Our approach is therefore
to use a full state motion planner to generate an “expert”
policy and value function for the fully modeled MDP and
then to project those solutions onto the unmodeled MDP using
behavior cloning.

A. Full state motion planner as the expert

First, we need to solve the fully modeled MDP for an
expert value function and policy. In our particular case this

corresponds to a collision free motion planning problem.
We use Djikstra’s algorithm over a regular 3D grid of end-
effector positions. Edges in the graph correspond to Euclidean
distances plus a penalty for approaching obstacles. Shortest
paths to goals in the graph correspond to optimal solutions to
the modeled MDP. Solutions found by the planner provide to
the behavior cloner: an approximately optimal policy πE and
an approximately optimal value function QE . Figure 2 shows
an example of a trajectory found using this method.

B. Cloning a full state motion planner

We project these solutions generated by the planner onto the
unmodeled MDP using behavior cloning. We do the following:
(a) Sample trajectories from expert: First, we roll out
the expert πE repeatedly. For each action, we simulate the
resulting next state and query the expert for an approx-
imate q-value, QE(s, a). We store the sequence of expe-
riences (s1, a1, q1), . . . , (sn, an, qn) in a dataset D, where
qi = QE(si, ai).
(b) Augment dataset with supervision for all actions:
Because we have a small number of actions and the expert
is implemented by a planner, we can generate supervision
for all feasible actions from a given state, not just those
executed by the simulator. Specifically, for each experience
(s, a, q) ∈ D, we generate |A| − 1 additional experiences
{(s, a′, QE(s, a

′))|a′ ∈ A \ a} and add these to D.
(c) Apply a penalty to non-expert actions: Unlike an
approach like DAGGER [12] which clones the policy directly,
here we are cloning the value function. This exposes us
to a key failure mode: we may learn a good estimate of
QE while still estimating πE poorly. Under ideal condi-
tions, our estimate Q is exactly equal to QE : Q(s, a) =
QE(s, a), ∀s, a ∈ S × A. In this case, the greedy pol-
icy of the learned value function is equal to expert policy:
argmaxaQ(s, a) = argmaxaQE(s, a) = πE(s). However,
since we are using a deep neural network to approximate QE ,
we can expect small errors. This is a problem because even
small errors can result in a substantial divergence between
argmaxaQ(s, a) and πE(s). To combat this, we set the action
values of non-expert actions to a fixed value c.

After generating the dataset D using the above, we use
standard SGD-based methods to optimize

LPQC = E(s,a,q)∼D

[
L(Q(s, a), q)

]
, (1)

We call this batch penalized Q cloning (batch PQC, Alg. 1).
Relationship of this cloning method to prior work: This
approach to behavior cloning draws elements from at least
two different pieces of prior work. First, since we are cloning
the value function rather than the policy, our method can be
viewed as a form of AGGREVATE [11]. Second, the fact that
we administer a penalty to non-expert actions is similar to what
is done in DQfD [2] and ADET [6]. However, since both of
those methods use TD learning, they must add an additional
term into the loss function in order to achieve this. DQfD
adds the relatively complex large margin loss term. ADET
adds a cross entropy term between the policy implied by the

Algorithm 1 Batch Penalized Q Cloning (Batch PQC)
1: D← ∅
2: while more episodes to execute do
3: s0 ∼ ρ0
4: for t ∈ [0, T − 1] do . iterate over time steps
5: at = πE(st)
6: for ∀a ∈ A do
7: if a = at then
8: q ← QE(st, a)
9: else

10: q ← c . apply penalty
11: D← D ∪ {(s, a, q)}
12: st+1 ← T (st, at)

13: Find Q that minimizes LPQC

14: Return Q

value function and the expert policy. In contrast, since our
method uses a fully supervised target, we can simply reduce
the supervised target q value without the additional loss term.
We experimentally compare our approach to AGGREVATE
and DQfD in Section IV.

C. Finetuning using TD learning

The cloning phase (pretraining) learns an approximately
correct value function and the TD learning phase (finetuning
using DQN in our case) makes small adjustments to improve
performance (e.g. to improve upon a sub-optimal planner).

IV. EXPERIMENTS IN SIMULATION

A. Experimental setup

We evaluate PQC against several algorithm variations and
baselines on two visual servoing tasks: a peg insertion task and
a block stacking task (Figures 4). In peg insertion, the robot
starts execution with the peg in its hand and must move it until
it reaches a goal pose just above the hole. The block stacking
task is similar except that the robot starts with a block in its
hand and must move it to a goal pose just above a second
block. This is more challenging because it requires the policy
to determine which block to stack upon.

B. Training details

For each task, we created a dataset with 50k episodes by
generating 500 scenes and rolling out 100 episodes per scene.
Each scene was populated by random clutter and random
peg/hole/block sizes and positions. For testing, we created a
holdout dataset (50k episodes from 100 scenes).

C. Comparisons with ablations and baselines

Figure 3 compares the performance of fixed penalty batch
PQC with a variety of ablations and baselines.

1. Batch PQC (green): Version of Batch PQC (Alg. 1).

2. Online PQC (blue): Same as batch PQC above except that
it is trained online using a DAGGER-like rollout schedule.

(a) Peg-insertion; training set (b) Peg-insertion; holdout test set (c) Block-stacking; training set (d) Block-stacking; holdout test set

Fig. 3. Success rate as a function of training episode during cloning. (a,b) are peg-insertion. (c,d) are block-stacking. (a,c) show success rates on the training
set. (b,d) show success rates on the holdout test set. Colors explained in Section IV-C. Results shown for training on 500 scenes. Note that PQQ (blue)
significantly outperforms on the block stacking task on a holdout set (d). Not shown: The test success rate for batch PQC (blue) increases to about 87%(a)
and 67%(b) if pretrained on 4k scenes and finetuned using TD learning. Note: Batch PQC (green) shows the average success rate over all 50k rollouts after
fully trained, and the online methods show success rates averaged over the last 500 rollouts.

(a) (b)

Fig. 4. (a) peg insertion scenario. (b) block stacking scenario.

3. Online PQC with no penalty (red): Ablation. Same as on-
line PQC but without penalty for non-expert actions.
4. Online PQC one action update (cyan): Ablation. Same as
online PQC except that only update the value of the action
selected for execution.
5. Online PQC, relative penalty (orange): Same as online
PQC except that we change line from: q ← c to: q ←
QE(st, a)− l, where l = 0.2.
6. DAGGER (black): Baseline. Classic DAGGER algorithm
implemented using the standard cross entropy loss.
7. DQfD with DAGGER schedule (magenta): Baseline. This
version of DQfD uses a single TD loss term plus supervised
large margin classification loss (margin is 0.2).
8. DQN on-policy (purple): Baseline. DQN trained on-policy.
9. DQN with DAGGER schedule (grey): Baseline. DQN
trained off-policy using the DAGGER schedule.

Based on these results, a few things are immediately clear.
First, Figure 3 shows that on-policy DQN (purple) underper-
forms significantly. This justifies our fundamental choice to
clone an expert rather than use model-free learning. Second,
our proposed methods, batch PQC (green) and online PQC
(blue) both perform similarly or slightly worse than two
baselines, DQfD (magenta) and DAGGER (black), on the
training set. However, they outperform these two baselines on
the holdout test set. This is particularly true for the block
stacking task which is harder than peg insertion because it
requires observing the size of the grasped block in order
to determine where to stack , see Figure 4-b. This suggests
that PQC generalizes better to new scenes with different

Failure Mode
Scene Success Collision Not Recognize Missed Hole

Rate Hole
1 14/20 2 3 1
2 19/20 - 1 -
3 17/20 1 2 -
4 18/20 - 1 1
5 18/20 - - 2

TABLE I
RESULTS FROM PHYSICAL ROBOT TRIALS. SUCCESS RATES AND FAILURE

MODES FOR EACH OF FIVE DIFFERENT SCENES.

clutter configurations. Finally, the results indicate that the
two ablations, online PQC with no penalty (red) and online
PQC with one action update (the two ablations of online
PQC), underperform, suggesting that both these elements of
the algorithm are important.

V. VALIDATION ON A PHYSICAL ROBOT

We performed 100 proof-of-concept trials on the robotic
system for the peg-insertion task on five novel scenes con-
taining novel objects placed arbitrarily (example scene in
Figure 1). We used a Robotiq 2F-85 gripper mounted on
a UR5 arm in a tabletop setting. An Intel SR300 depth
sensor was mounted near the robotic hand as illustrated in
Figure 1. We train a pix2pix GAN [4] to learn a model
that transforms a real image into an image that looks like
what the simulator would have produced under similar cir-
cumstances. For more details, see longer version of this paper
https://arxiv.org/pdf/2005.11810.pdf.

Table I shows the results of 86% success rate over all trials.
Each trial began with the manipulator in a randomly selected
pose (not in collision) continued until either reaching the hole,
colliding with an object or timing out. We used the same policy
for all trials – one that was trained in simulation using the full
batch BQC cloning followed by TD learning (finetuning).

VI. CONCLUSION

We explore planner cloning, an approach that leverages
the asymmetry in information that is available to the agent
at train and test time. We generate an “expert” policy and q
function in simulation with full state information and project
these plans onto a policy that the agent can execute via
behavior cloning. We propose Penalized Q Cloning (PQC)

https://arxiv.org/pdf/2005.11810.pdf

that outperforms several algorithm ablations and baselines in
simulation. Finally, we demonstrate that the resulting policies
have similarly good performance on a real robotic system.

REFERENCES

[1] B. Espiau, F. Chaumette, and P. Rives. A new approach
to visual servoing in robotics. IEEE Transactions on
Robotics and Automation, 8(3):313–326, June 1992. doi:
10.1109/70.143350.

[2] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanc-
tot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan,
Andrew Sendonaris, Ian Osband, et al. Deep q-learning
from demonstrations. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[3] Seth Hutchinson, Gregory D Hager, and Peter I Corke.
A tutorial on visual servo control. IEEE transactions on
robotics and automation, 12(5):651–670, 1996.

[4] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–
1134, 2017.

[5] Stephen James, Andrew J. Davison, and Edward Johns.
Transferring end-to-end visuomotor control from sim-
ulation to real world for a multi-stage task. CoRR,
abs/1707.02267, 2017. URL http://arxiv.org/abs/1707.
02267.

[6] Aravind S Lakshminarayanan, Sherjil Ozair, and Yoshua
Bengio. Reinforcement learning with few expert demon-
strations. In NIPS Workshop on Deep Learning for Action
and Interaction, volume 2016, 2016.

[7] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res., 17(1):1334–1373, January 2016.

[8] Sergey Levine, Peter Pastor, Alex Krizhevsky, and
Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection. In Proc. International Symposium on Exper-
imental Robotics (ISER), Tokyo, Japan, October 2016.

[9] Jeffrey Mahler and Ken Goldberg. Learning deep policies
for robot bin picking by simulating robust grasping
sequences. In Conference on robot learning, pages 515–
524, 2017.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[11] Stéphane Ross and J. Andrew Bagnell. Reinforcement
and imitation learning via interactive no-regret learning.
CoRR, abs/1406.5979, 2014. URL http://arxiv.org/abs/
1406.5979.

[12] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the four-

teenth international conference on artificial intelligence
and statistics, pages 627–635, 2011.

[13] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and
Sergey Levine. Sim2real view invariant visual servoing
by recurrent control. CoRR, abs/1712.07642, 2017. URL
http://arxiv.org/abs/1712.07642.

[14] Mengyuan Yan, Iuri Frosio, Stephen Tyree, and Jan
Kautz. Sim-to-real transfer of accurate grasping with
eye-in-hand observations and continuous control. arXiv
preprint arXiv:1712.03303, 2017.

[15] Billibon H Yoshimi and Peter K Allen. Active, uncali-
brated visual servoing. In Proceedings of the 1994 IEEE
International Conference on Robotics and Automation,
pages 156–161. IEEE, 1994.

[16] Fangyi Zhang, Jürgen Leitner, Michael Milford, and
Peter Corke. Sim-to-real transfer of visuo-motor policies
for reaching in clutter: Domain randomization and adap-
tation with modular networks. CoRR, abs/1709.05746,
2017. URL http://arxiv.org/abs/1709.05746.

[17] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu,
Tom Erez, Serkan Cabi, Saran Tunyasuvunakool, János
Kramár, Raia Hadsell, Nando de Freitas, et al. Rein-
forcement and imitation learning for diverse visuomotor
skills. arXiv preprint arXiv:1802.09564, 2018.

http://arxiv.org/abs/1707.02267
http://arxiv.org/abs/1707.02267
http://arxiv.org/abs/1406.5979
http://arxiv.org/abs/1406.5979
http://arxiv.org/abs/1712.07642
http://arxiv.org/abs/1709.05746

	Introduction
	Visual Servo Problem
	Penalized Q Cloning (PQC)
	Full state motion planner as the expert
	Cloning a full state motion planner
	Finetuning using TD learning

	Experiments in simulation
	Experimental setup
	Training details
	Comparisons with ablations and baselines

	Validation on a physical robot
	Conclusion

