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Abstract—We aim to enable a robot to solve arbitrary ma-
nipulation tasks using dexterous manipulation primitives. This
suggests the use of techniques from task-and-motion planning,
which can sequence primitives by performing multistep reasoning
and forward simulation. At the same time, we aim to solve such
tasks when presented with objects of different shapes and sizes,
suggesting the use of learned perceptual representation which
enable generalization across geometries. However, it has remained
challenging to incorporate these representations into systems that
perform accurate forward simulation, a necessary component for
reasoning toward long-horizon goals. We propose a framework,
that utilizes deep generative models and segmented object point-
clouds, that enables multistep planning using dexterous primitive
manipulation skills in tasks involving a variety of object shapes
and sizes. Our learned models, taking the form of biased sampling
distributions, provide gains in planning efficiency over a manually
designed baseline when integrated with a sampling-based planner.
We also contribute a set of novel design choices in this framework
which provide benefits in generalization and sample quality.

I. INTRODUCTION

Consider the task depicted in Figure 1. A two-arm robot
must use its palms to move the red box from its initial
configuration to the green goal pose, which is on the opposite
side of the table and on a different face of the object. This can
be imagined as a proxy for the real-world task of moving, for
example, a book from an arbitrary initial tabletop pose into a
specified upright pose in the corner of a shelf.

We assume that the robot has access to a variety of pa-
rameterized primitive skill behaviors that can be combined to
solve the task, such as pulling, to translate and change the yaw
angle of the object, and grasping, to flip it onto a different
face. Parameter values for each skill must be chosen that
determine how the skill is executed. Finding a task solution
amounts to searching for a suitable sequence of skill types and
corresponding parameter values (i.e. where to grasp and how
to flip) for a particular start and goal pose of the object.

One way to tackle this problem is by using a task-and-
motion planning (TAMP) algorithm [7, 2, 5, 12], which usually
incorporates construction of a search tree, sampling from
distributions over skill parameters, and iterative simulation
of many skill sequences until one that reaches the goal is
found. One of the major drawbacks of most of these TAMP
algorithms is that they assume access to the pose and shape of
the objects in the scene, and use manually-designed samplers
that use this information for skill parameters.
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Figure 1. Our framework uses conditional generative models and dexterous
primitives to imagine and execute multi-step manipulation plans for solving
arbitrary start/goal manipulation tasks, when presented with only a pointcloud
observation of the object.

For robots to operate in unforeseen environments however,
they must be able to manipulate objects whose shape and
pose are not known apriori. For example, consider again the
problem in Fig. 1. The robot may need to put away many
different sized books, but not know in advance their specific
size and shape. This requires a sampler that can directly
operate on sensory input, which is difficult to hand-design.

Based on this observation, we propose a framework that
learns skill parameter samplers from prior experience using
the primitive skills [8], that directly operate on sensory obser-
vations. While our framework can be used within any TAMP
algorithm, in this work, we assume that a plan skeleton [9],
which is a sequence of primitive types, such as pull-grasp-
push, is given. Our objective is to find the continuous param-
eters of the plan skeleton using the learned samplers.

One key challenge in designing such a framework is learn-
ing the representation of an object represented by unstructured
sensor data that enables both long-horizon reasoning and
generalization across object shapes. There has been much work
on learning representations of RGB-D images that are tailored
to distinct action types, such as top-down grasping [15, 14, 16],
suction [15] and pushing [1, 14]. These learning-based tech-
niques for encoding sensory observations demonstrate strong
generalization to diverse real world objects and are thus
applicable for our similar goals of object generalization.

However, it has remained difficult to integrate these rep-
resentations into systems that can solve problems involving
longer planning horizons, in part because directly learning
highly accurate forward models in this space of sensory data



is extremely difficult. We instead propose to use segmented
pointclouds as an object representation that provides more
structure than pixel-based representations but is still flexible
enough to afford generalization across object shapes.

To support long-horizon planning, we propose a system
design where we learn two different samplers: a subgoal
sampler for predicting a reachable rigid body transform that
can be used to forward simulate and imagine future point-
cloud observations, and a contact sampler that generates end-
effector poses suitable for achieving the predicted subgoal.
The samplers are designed to learn and exploit the correlation
between contacts and subgoals. To support generalization
across objects, we use recent advancements in neural network
architectures that can operate on pointcloud data, such as
PointNet++ [10] and Graph Attention Networks [13], in a
conditional generative modeling scheme where the samplers
are represented as neural networks.

We validate our approach in a simulated domain where
a dual arm system, equipped with end effector palms, is
tasked with solving a large distribution of object manipulation
tasks. Our method provides significant advantages in planning
efficiency and prediction quality over a manually designed
baseline that utilizes privileged knowledge about the shape
of the objects and the task.

II. PROBLEM DEFINITION

A. Problem Setup

We define a robot manipulation primitive skill π as a
function that takes as an input a set of parameters, Θ, and
outputs a robot joint trajectory. For instance, consider the right-
hand pulling skill, denoted πPULLRH. Its parameters, denoted
ΘPULLRH, are the pose of the right palm, T pR ∈ SE(3),
expressed in the world coordinate frame, and the desired rigid
body transformation of the object, T o ∈ SE(3). Given T pR
and T o, the primitive skill outputs a sequence of right arm
configurations (q0, ..., qM ), q ∈ Rd, for pulling the object. The
skill is feasible if (q0, ..., qM ) is collision-free, does not have
large joint velocities, and does not go through singularities.
If T pR leads to a compatible contact configuration between
the end effector and the object at its initial pose, then when
(q0, ..., qM ) is followed, T o will be applied to the object.

We consider general primitives of this type, which take as
parameters an initial world frame pose of one or both robot
palms T pR,L and a desired object transformation T o,

π : T pR × T pL × T o −→ Q∗
R,L

where Q∗
R,L denotes the space of right and left arm configura-

tion sequences. In particular, we utilize the primitive planning
scheme developed in [6], although other primitives parameter-
ized by an initial contact configuration and a desired motion
to apply are equally applicable to the presented framework.

B. Planning Problem Definition

Assume we are given a desired rigid body transformation
to be applied to the object, T odes ∈ SE(3) along with a plan
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Figure 2. Snapshots during the execution of a (a) pull skill and (b) grasp
skill on the simulated YuMi robot in PyBullet.

skeleton PS that defines the high level sequence of primitives
that should be used to complete the task:

PS = π0(Θ0) −→ π1(Θ1) −→ · · · −→ πK(ΘK)

For plan skeleton PS, we denote its space of parameters as
ΘPS . The robot observes the world using a set of RGB-D
sensors which provide a segmented point cloud observation
of the environment X ∈ RN×3. Given a set of primitive
skills, a plan skeleton PS, a desired object transformation
T odes, and a pointcloud observation X of the object at some
initial configuration, our objective is to find the parameters of
the given plan skeleton, θPS ∈ ΘPS , that achieves T odes.

C. Learning Problem Definition

Given a distribution from which skill parameters can be
sampled, an RRT-style algorithm (described in detail in Sec-
tion III-D) can be used to solve the planning problem described
in Section II-B. This involves sampling intermediate values of
T o, referred to as subgoals, and corresponding end effector
poses T p that can reach these subgoals. The intuition behind
this approach is the following: A generative model over
subgoals can act a forward model, since sampled values of
T o can be used to transform an observed Xt into an imagined
X̂t+1. This process can repeat iteratively, enabling multiple
steps of forward simulation. At the same time, a generative
model over contact poses acts as a biased action sampler,
that produces actions that are likely to be feasible for the
particular object being represented by X . When combined,
pairs of subgoals and contact poses can be provided as input
to π(Θ) to determine the feasibility of the resulting motion.

We are given an experience dataset D consisting of success-
ful single-step skill executions. These can be considered as a
set of demonstrations of solving planning problems with PS
of length one, where the subgoal parameter T o equals T odes.

D = {(X(i), PS(i), T
o (i)
des , θ

(i)
PS)}ni=1

Using this data, we aim to train conditional generative skill
models, pφ,SKILL(·|X), taking the form of a deep neural net-
work parameterized by φ, that at test time produces a distribu-
tion over high likelihood skill parameters when provided with
a new pointcloud observation.



Figure 3. Labeled training data for the task of predicting object-table contact
segmentation masks. The blue points are those on the object pointcloud that
end up in contact with the table after πGRASPHREORIENT skill execution (pink
points on the table are shown for visualization of where the blue points end
up). Given the masked blue points and the table pointcloud, registration can
be used to solve for stable subgoal T o.

III. METHODOLOGY

A. Learning Approach

We leverage conditional variational auto-encoders (CVAE)
[11] to learn pφ,SKILL using dataset D. This approach raises
multiple open questions in the design of the system architec-
ture and skill parameter representation, and these questions are
discussed in the following sections.

B. Learning the joint subgoal-contact distribution

One naive application of this framework to our problem
of sampling T p and T o is to train separate CVAEs, effec-
tively modeling T o and T p as independent random variables.
Another option is to model their dependence via a condi-
tional distribution, i.e. learn one CVAE that predicts subgoals
conditioned on pointclouds, and learn a second CVAE that
predicts contact configurations conditioned on pointclouds and
subgoals. Instead, our approach is to directly model the joint
distribution via a single latent variable, i.e. simultaneously
predict both subgoals and contact configurations conditioned
on pointclouds.

C. Generalizable SE(3) Subgoal Representation

Subgoals for skills such as πGRASPREORIENT (Fig. 2b) must
be represented in full SE(3). For generalization to novel
geometries and object states, it is unclear whether directly
predicting an SE(3) transformation is the most useful ap-
proach, as we require the ability to predict T o that will lead
to a reachable and passively stable object pose that doesn’t
change when the robot breaks contact and moves to the next
step in PS. Directly predicting T o is not well suited to meet
this requirement, and can lead to transforming the pointcloud
into unstable or unreachable configurations (i.e. floating in
air, penetrating the table, tilted on an edge, etc.). We instead
propose to have the model predict a binary segmentation mask
directly with respect to the observed pointcloud, representing
the set of points that should end in contact with the table, and
then use these points in a registration routine to solve for T o.

Fig. 3 shows a visual depiction of this representation on a few
cuboidal objects.

D. Generalizable Multistep Planning With Pointclouds

We integrate our learned generative models with a sampling-
based planning framework inspired by RRT. For the first step
in PS, the initial pointcloud X0 is used to sample parameters
θ0 ∼ pφ,SKILL(·|X0) for that corresponding skill. If the instan-
tiated skill π0(θ0) is feasible, θ0 are saved for that position
in PS. Additionally, the initial pointcloud X0 is transformed
via the sampled T o0 into a new configuration X1 that can
be used as the conditioning variable when sampling the next
skill in the skeleton, and this process is repeated. For the
final step in PS, the required unknown T oK can be solved for
based on the required transformation-to-go to solve the task as
T oK = T odesΠ

K−1
i=0 T

o
i , since we know the determined returned

subgoals T o0 , ..., T
o
K should follow T odes = ΠK

i=0T
o
K−i.

IV. EXPERIMENTS AND RESULTS

Our experiments are designed to validate our primary claim
that our learned sampler performs better than a hand-designed
sampler when integrated with our multistep planning frame-
work. We also conduct experiments to answer whether our
choice of joint subgoal-contact distribution modeling and seg-
mentation mask subgoal representation lead to better generated
sample quality and generalization to unseen pointclouds. In the
current work we focus on the primitive πGRASPREORIENT.

A. Experimental Setup

The framework is implemented on an ABB YuMi robot
simulated in PyBullet [3]. GelSlim [4] end effectors are used,
similarly to as in [6], without the tactile sensing simulated.
The robot operates in a table-top environment with RGB-D
cameras located at the four corners all focused at the same
point in the front of the robot. We use the built-in segmentation
mask capability in PyBullet to obtain segmented pointclouds
of the object from the simulated depth images.

B. Training Details and Network Architecture

We compare PointNet++ [10] and Graph Attention Net-
works (GAT) [13] for the encoder and decoder in our CVAE,
as these architectures have shown success in learning useful
embeddings for downstream tasks involving graph-structured
data such as pointclouds. The encoder is trained to map the
data in D to a latent conditional distribution, constrained by
a KL-divergence loss to resemble a unit Gaussian. Sampled
latents are concatenated as an additional feature to the points
in X , which the decoder uses to reconstruct the data.

We generate a distribution of cuboids of varying dimensions.
The model is trained on a small subset of them and tested on
cuboids with dimensions never seen during training. The data
generation procedure relies on the simulation of the primitive
skills in a scenario where 3D object models are available,
allowing computation of stable poses, collision checking be-
tween the robot and the environment, and using a rejection
sampling scheme to randomly sample skill parameters to find



Figure 4. Single Step Grasp+Reorient Results: Modeling the joint vs. the
conditional distribution leads to substantially better generalization, and our
segmentation mask subgoal representation leads to significantly lower position
and orientation errors.

ones that are feasible. When feasible skills are found, they are
executed and the parameters are added to the dataset.

C. Evaluation: Single-step Grasp + Reorient

To demonstrate the value of the novel aspects of our ap-
proach, we conduct a set of single-step trials using variants of
the learned sampler. For 20 unseen cuboid objects of different
dimensions, 60 different start poses in a region near the front
of the robot are sampled per object. From the pointcloud
observation of the object in each start state, the learned model
is tasked with producing its own T o and T p.

We compare both subgoal representations, one which in-
volves directly predicting T o, along with our novel approach
that involves predicting a binary per-point segmentation mask,
and using the masked points in a registration step to solve for
T o. We use ICP to solve for the registration, and initialize the
registration with a pure forward π

2 pitch about the object body
frame. We also implement a manually designed baseline using
plane segmentation and antipodal point heuristics based on
the privileged knowledge that we are operating with cuboids.
Note that our method never assumes anything about the global
geometry of the manipulated objects.

For each start state, we measure the following
(a) Grasp stability: Did the object miss making contact, or

drop the object during execution?
(b) Mask placement success: Did the set of predicted table-

object contact points end up on the table?
(c) Motion planning success: Given a budget of 15 samples,

could the motion planner find a feasible plan?
(d) Pose error: For feasible plans that are executed, how close

was the executed object transformation to the sampled T o

Fig. 4 shows the GAT-joint-mask model performs best.

D. Evaluation: Multi-step Manipulation

To validate the benefits provided by our learned sampler,
we conduct multi-step planning experiments using unseen
objects and measure fixed-budget planning success rate and
returned plan quality for a variety of plan skeletons. The
framework in III-D is implemented using the best performing

Table I
MULTISTEP PLANNING RESULTS

Planning Success Rate PG GP PGP

Learned 0.78 0.83 0.79
Uniform 0.19 0.19 0.05

Sticking Contact Success Rate PG GP PGP

Learned 0.79 0.93 0.74
Uniform 0.75 0.71 0.50

Multistep planning success rate with a fixed 5-minute timeout using our
learned skill samplers and a manually designed uniform sampler. Planning
success rate indicates percent of planning problems where the planner found
a solution before timing out. Sticking contact success rate indicates percent
of plans that were executed where contact was maintained with the object
for the duration of each step where sticking contact is assumed. PG: Pull
→ Grasp, GP: Grasp → Pull, PGP: Pull → Grasp → Pull

Figure 5. Geometry Generalization: The best performing GAT-Joint-Mask
pφ,GRASPREORIENT model was trained only on cuboids, and tested on cylinders
in a small set of configurations. Top row: simulator execution of preditions.
Bottom row: visualization of subgoal (blue pointclouds) and contact (green
palm) predictions. The predictions were qualitatively observed to be feasible,
indicating the model has somewhat learned to generalize to global geometry
outside the training distribution.

pφ,GRASPREORIENT model. The same heuristic baseline is used
for comparison, and a similar heuristic sampler for πPULLRH
(Fig. 2a) is used in both cases.

Planning success rate quantifies the fraction of trials where
a plan is found before timeout. We also track whether the robot
maintains contact during open loop execution to quantify the
quality of the plans that are returned. Table I results indicate
that the learned sampler provides a large benefit in planning
efficiency and returned plan quality.

E. Qualitative Results: Geometry Generalization

Fig. 5 shows predictions made by models trained only on
cuboids, and tested on cylinders in different configurations. As
shown, the predictions for both T o and T p are quite sensible
and were able to be executed successfully in the simulator.

V. CONCLUSION

We presented a method based on deep generative modeling
applied to segmented pointclouds to enable general-purpose
multistep sampling-based planning using dexterous primitive
manipulation skills. Our method enables planning efficiency
gains over a manually designed baseline sampler, while si-
multaneously allowing generalization to unseen objects by
utilizing a perception-driven object representation.
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