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Abstract—We present a framework for visual action plan-
ning of complex manipulation tasks with high-dimensional state
spaces such as manipulation of deformable objects. Planning is
performed in a low-dimensional latent state space that embeds
images. We define and implement a Latent Space Roadmap
(LSR) which is a graph-based structure that globally captures
the latent system dynamics. Our framework consists of two main
components: a Visual Foresight Module (VFM) that generates
a visual plan as a sequence of images, and an Action Proposal
Network (APN) that predicts the actions between them. We show
the effectiveness of the method on a simulated box stacking task
as well as a T-shirt folding task performed with a real robot.

I. INTRODUCTION AND RELATED WORK

Designing efficient state representations for task and motion
planning is a fundamental problem in robotics studied for
several decades [1], [2]. Traditional planning approaches rely
on a comprehensive knowledge of the state of the robot and
the surrounding environment as for example [3] and [4].

However, when dealing with high-dimensional state spaces
and complex dynamics, such as highly deformable objects,
these approaches become intractable [5] even when sampling-
based algorithms [6] are deployed. For this reason, data-driven
low-dimensional latent space representations for planning are
receiving increasing attention as they make it possible to
consider states that would otherwise be intractable. In partic-
ular, deep neural networks allow for implicit representation
of complex state spaces and their dynamics, thus enabling
an automatic extraction of lower-dimensional state represen-
tations [7]. Some of the most common approaches to learning
compact representations in an unsupervised fashion are latent
variable models such as Variational Autoencoders (VAEs) [8],
[9] or encoder-decoder based Generative Adversarial Networks
(GANs) [10], [11]. These models can learn low-dimensional
state representations directly from images. In this way, images
can be used as input for planning algorithms to generate
“visual plans” [12].

Latent state representations, however, are not guaranteed
to capture the global structure and dynamics of the system,
i.e. to encode all the possible system states and respective
feasible transitions. Furthermore, not all points in the latent
space necessarily correspond to physically valid states of the
system, which makes it hard to plan by naively interpolating
between start and goal states.

One way to address these shortcomings is to restrict the ex-
ploration of the latent space via imitation learning as presented
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Fig. 1: Overview of the proposed method. The Visual Foresight
Module (blue) takes the start and goal images and produces a visual
plan from a latent plan found with the Latent Space Roadmap (cyan).
The Action Proposal Network (red) proposes suitable actions to
achieve the transitions between states in the visual plan. The final
result is a visual action plan (green) from start to goal containing
actions to transition between consecutive states.

in [13], where a latent space Universal Planning Network
(UPN) embeds differentiable planning policies and the process
is learned in an end-to-end fashion. A more common solution
to mitigate the challenges of planning in latent spaces is to
collect a large amount of training data that densely covers the
state space and allows to infer dynamically valid transitions
between states. Following this approach, the authors in [12]
propose a framework for global search in the latent space
where a network approximates the latent space dynamics and
motion planning is performed by an RRT-based algorithm.
Similarly, the manipulation of a deformable rope to desired
goal states is investigated in [14] where 500 hours worth of
data collection are used to learn the rope’s inverse dynamics.

In this paper, we address the aforementioned challenges
related to latent space representations by constructing a Latent
Space Roadmap (LSR) which is a graph-based structure built
in the latent space to both capture the global structure of
the state space and avoid sampling invalid states. In this
way, our method, visualised in Fig. 1, is able to identify the
feasible transitions between regions containing similar states
using the LSR and to generate a valid visual action plan by
sampling new valid states inside these regions. Furthermore,
our approach is data-efficient as we do not assume that
the training dataset densely covers the state space neither
accurately represents system dynamics. We instead consider
a dataset consisting of pairs of images and demonstrated
actions connecting them, and then learn feasible transitions
between states from this partial data. This allows avoiding full
imitation for modeling as in the UPN framework [13] as well
as tackling tasks involving highly-deformable objects such as
cloths. Finally, we experimentally evaluate our method on a



simulated box stacking task as well as a real-world T-shirt
folding task.

II. PROBLEM STATEMENT AND NOTATION

The goal of visual action planning can be formulated as
follows: given start and goal images, generate a path as a
sequence of images representing intermediate states and com-
pute dynamically valid actions between them. The problem is
formalized in the following.

Let I be the state space of the system represented as images
with fixed resolution and let Isys ⊂ I be the subset of valid
states representing all the states of the system that are possible
to reach while performing the task. Let U be the set of possible
control inputs or actions.

Definition 1: A visual action plan consists of a visual
plan represented as a sequence of images PI = {Istart =
I0, I1..., IN = Igoal} where Istart and Igoal are images
representing the start and the goal states, and an action plan
represented as a sequence of actions Pu = {u0, u1, ..., uN−1}
where un ∈ U generates a transition between consecutive
states In and In+1 for each n ∈ {0, ..., N − 1}.

To reduce the complexity of the problem we consider a
lower-dimensional latent space Z encoding I, and Zsys ⊂ Z
encoding Isys. Using Zsys, a visual plan can be computed
in the latent space as Pz = {zstart = z0, z1, ..., zN = zgoal}
where zn ∈ Zsys, and then decoded as a sequence of images.
In order to obtain a valid visual plan, we study the structure
of the space Zsys which in general is not path-connected. To
ensure a valid Pz , we make an ε-validity assumption that is
motivated by the continuity of the encoding of I into Z:

Assumption 1: Let z ∈ Zsys be a valid latent state. Then
there exists ε > 0 such that any other latent state z′ in the
ε−neighborhood Nε(z) of z is a valid latent state, i.e. the
following equivalence relation holds true

z ∼ z′ ⇐⇒ ||z − z′||d < ε, (1)

where the subscript d ∈ {1, 2,∞} denotes the metrics L1, L2

and L∞, respectively, and ε a task-dependent parameter.
Therefore, given a set of valid latent states zi ∈ Zsys, with

i = 1, ...,M , the union Rε
z of their ε−neighborhoods consists

of valid points:

Rε
z =

M⋃
i=1

Nε(zi) ⊂ Zsys. (2)

The subspace Rε
z can be then considered as the union of m

path-connected components called valid regions and denoted
by {Zi

sys}mi=1. To connect them, we define a set of transitions:
Definition 2: A transition function f i,jz : Zi

sys×U → Zj
sys

maps any point z ∈ Zi
sys to a class representative zjsys ∈ Zj

sys,
where i, j ∈ {1, 2, ...,m} and i 6= j.

Given a set of valid regions {Zi
sys}mi=1 in Zsys and a set of

transition functions connecting them we can approximate the
global transitions of Zsys as shown in Fig. 2. To this end, we
define a Latent Space Roadmap:

Definition 3: A Latent Space Roadmap is a directed graph
LSR = (VLSR, ELSR) where each vertex vi ∈ VLSR ⊂ Zsys

Fig. 2: A visualisation of the structure of the latent state space with
valid regions Zi

sys and transition functions f j,i
z between them.

for i ∈ {1, 2, ...,m} is an equivalence class representative
of the valid region Zi

sys ⊂ Zsys, and an edge ei,j =
(vi, vj) ∈ ELSR represents a transition function f i,jz between
the corresponding valid regions Zi

sys and Zj
sys for i 6= j.

III. AN OVERVIEW OF OUR APPROACH

We consider a training dataset TI consisting of generic
tuples of the form (I1, I2, ρ) where I1 ⊂ Isys is an image
of the start state, I2 ⊂ Isys an image of the successor
state, and ρ a variable representing the action that took place
between the two states. Here, an action is considered to be
a single transformation that produces any consecutive state I2
different from the start state I1, i.e., ρ cannot be a composition
of several transformations. On the contrary, no action was
performed if states I1 and I2 are variations of the same
state. The variable ρ = (a, u) consists of a binary variable
a ∈ {0, 1} for action\no action, and u containing the task-
dependent action-specific information which can be used to
infer the transition functions f i,jz .

Our method consists of two main components depicted in
Fig. 1. The first is the Visual Foresight Module (VFM) which
is a trained VAE endowed with a Latent Space Roadmap
(LSR). Given a start and goal state, the VFM produces a visual
plan PI consisting of a sequence of images. The sequence PI

is a decoded latent plan Pz found in the VAE’s latent space
using the LSR. The second component is the Action Proposal
Network (APN) which takes a pair (zi, zi+1) of consecutive
latent states from the latent plan Pz produced by the VFM
and proposes an action ui to achieve the desired transition
f i,i+1
z (zi, ui) = zi+1. The two components combined produce

a visual action plan that can be executed by any suitable
framework.

IV. VISUAL FORESIGHT MODULE (VFM)
The Visual Foresight Module in Fig. 1 has two building

blocks that are trained in a sequential manner. Firstly, we train
a VAE with an additional term in the loss function that affects
the structure of the latent space. Once the VAE is trained, we
build our LSR in its latent space Z which identifies the valid
regions Zi

sys. We present the details below.
1) Latent state space: Let I ⊂ Isys be an input image, and

let z denote the unobserved latent variable and p(z) the prior
distribution. The VAE model [8], [9] is trained to minimize

Lvae(I)=Ez∼q(z|I)[log p(I|z)] + β ·DKL (q(z|I)||p(z)) (3)

with respect to the parameters of the encoder and decoder
neural networks which model the parameters of the approxi-
mate posterior distribution q(z|I) and the likelihood function



Fig. 3: An example of a visual action plan from the start (left) to the goal state (right) for the box stacking task produced using our method.

p(I|z), respectively. Since our training data consists of tuples
(I1, I2, a), we compute Lvae for I1 and I2 separately and
leverage the information contained in the binary variable a
by minimizing an additional action term

Laction(I1, I2)=

{
max(0, dm − ||z1 − z2||d) if a = 1

||z1 − z2||d if a = 0
(4)

where z1, z2 ⊂ Zsys are the latent encodings of the input states
I1, I2 ⊂ Isys, respectively, and the subscript d denotes the
metric as in (1). The hyperparameter dm introduced among the
action pairs enforces different states to be encoded in separate
parts of the latent space. The action term Laction naturally
encourages the formulation of the valid regions Zi

sys in the
latent space while maintaining the capability to generalise, i.e.
to sample novel valid states inside each region Zi

sys.
The complete VAE loss term then equals

L(I1, I2) =
1

2
(Lvae(I1)+Lvae(I2))+γ ·Laction(I1, I2) (5)

where the parameter γ controls the influence of the distances
among the latent codes on the structure of the latent space.
A. Latent Space Roadmap (LSR)

The Latent Space Roadmap is defined in Definition 3 and
based on the idea that each node in the roadmap is associated
with a valid region Zi

sys. Two nodes are connected by an edge
if there exists an action pair (I1, I2, ρ) in the training dataset TI
such that the transition f1,2z (z1, u1) = z2 is achieved in Zsys.

We provide the summary of our algorithm but refer the
reader to [15] for full details. In Phase 1, we build a reference
graph G = (V, E) induced by Tz which serves as a look-up
graph to keep track of which areas in Zsys have already been
explored as well as to preserve the edges that later induce
the transition functions f i,jz . In Phase 2, we identify the valid
regions Zi

sys ⊂ Zsys using DBSCAN [16] with distance
parameter ε. In Phase 3, we build the LSR = (VLSR, ELSR)
such that each node vi ∈ VLSR is a representative of the valid
region Zi

sys and the edges between them are inferred using
E from the reference graph. We create an edge in LSR if
there exists an edge in E between two vertices in V that were
allocated to different valid regions.

The parameter ε is obtained as a weighted sum of the mean
and standard deviation of the distances ‖z1− z2‖d among the
no-action latent pairs such that similar states, captured in the
no-action pairs, belong to the same valid region, while states
in the action pairs are allocated to different valid regions.

Using the LSR and the trained VAE model, we can generate
one or more visual action plans from start to goal state. To
this aim, the states are first encoded in the latent space and
the closest nodes in the LSR are found. Next, all shortest

paths [17] in the LSR between the identified nodes are
retrieved.

V. ACTION PROPOSAL NETWORK (APN)
The Action Proposal Network is used to predict the specifics

of an action ui that occurs between a latent pair (zi, zi+1) from
a latent plan Pz produced by the VFM. We deploy a diamond-
shaped multi layer perceptron and train it in a supervised
fashion on the latent action pairs (z1, z2, ρ = (1, u)) obtained
from the enlarged dataset Tz by leveraging sampling in the
latent space.

VI. EXPERIMENTS

The proposed approach is evaluated on a simulated box
stacking task and a T-shirt folding task on a real robot.

A. Box stacking
The simulation setup, shown in Fig. 3 is composed of four

boxes with different textures that can be stacked in a 3 × 3
grid. The action-specific information u is a pair u = (p, r) of
pick p and release r coordinates in the grid.

For the VFM, we deploy a baseline VAE-b with γ = 0,
and three distance VAEs (VAE-L1, VAE-L2, VAE-L∞) with a
ResNet architecture [18] for the encoder and decoder networks
and a 64-dimensional latent space. Similarly, we train four
APNs (APN-b, APN-L1, APN-L2 and APN-L∞). The de-
signed task contains exactly 288 different grid configurations.
Given a pair of such grid configurations and the ground truth
stacking rules, it is possible to analytically determine whether
or not an action is allowed between them. This enables an
automatic evaluation of the structure of the latent space Zsys,
the quality of the visual plan PI generated by the VFM as
well as of the corresponding action plan Pu predicted by the
APN.

1) VAE latent space analysis: Let each of the 288 possible
grid configuration represent a class. We analyse the difference
between the minimum inter-class distance and the maximum
intra-class distance for each class. The higher the value the
better separation of classes in the latent space is achieved.
When the latent states are obtained using VAE-b we observe
the difference to be always negative with an average value of
≈ −8.3. On the other hand, when calculated on points encoded
with VAE-L1 it becomes non-negative for 286/288 classes
and its mean value increases to ≈ 0.78. This means that,
even when there exists no direct link between two samples
of different classes and thus the action term for the pair is
never activated, the VAE-L1 is able to encode them such
that the desired distances in the latent space are respected.
We therefore conclude that the action term results in a better
structured latent space Zsys.



Fig. 4: Execution of the folding task with re-planning. On the left, a set of initial visual action plans reaching the goal state is proposed.
After the first execution, only one viable visual action plan remains.

Model All Any Trans.
VAE-b + LSR-d, ∀d 0 % 0 % 33.3 %
VAE-L1 + LSR-L1 100 % 100 % 100 %
VAE-L2 + LSR-L2 99.9 % 99.9 % 99.9 %

VAE-L∞ + LSR-L∞ 8.2 % 12 % 53.2 %

Table I: Visual foresight results for box stacking case study comparing
different metrics (best results in bold).

2) LSR and APN analysis: In Table I we show the results
obtained on LSRs built with the training data from the baseline
VAE (first row) and the action VAEs (last three rows). In
particular, we report the percentage of cases when all the
shortest paths in each LSR are correct, when at least one of the
proposed paths is correct, and the percentage of correct single
transitions. All APNs perform with 99% or higher accuracy
evaluated on 10 different random seedson an unseen test set
consisting of 1491 action pairs.

B. T-shirt folding
A Baxter robot, equipped with a Primesense RGB-D camera

mounted on its torso, is used to fold a T-shirt in different
ways as shown in Fig. 4. We perform a re-planning step after
each action execution to account for possible uncertainties.
The current cloth state is then considered as a new start state
and a new visual action plan is produced until the goal state
Igoal is reached or the task is terminated. Compared to the box
stacking task we use a larger version of the ResNet architecture
for the VFM but keep the 64-dimensional latent space.

1) APN Analysis: We evaluate the performance of the APN
models on 5 random seeds on a test split consisting of 104
action pairs. Table II reports mean and standard deviation of
the Mean Squared Error calculated across the different random
seeds. We observe a higher error when using VAE-b which
again indicates that the latent space lacks structure if the action
term (4) is excluded from the loss function.

Model Pick Release Total
APN-b 0.50± 0.09 0.68± 0.09 1.24± 0.16

APN-L1 0.34 ± 0.06 0.49 ± 0.09 0.87 ± 0.07
APN-L2 0.40± 0.05 0.51± 0.08 0.96± 0.12
APN-L∞ 0.49± 0.05 0.65± 0.07 1.20± 0.07

Table II: The error of action predictions obtained in the folding task
on APN models with different metrics (best results in bold).

2) Execution Results: The performance of the entire system
cannot be evaluated in an automatic manner as in the box
stacking task. We therefore choose five novel goal configura-
tions and perform the folding task five times per configuration
on each framework F-Ld that uses VAE-Ld, APN-Ld, and
LSR-Ld with d = 1, 2,∞. The results are shown in Table
III, while all execution videos are available on the website1.
We report the total system success rate with re-planning, the
percentage of correct single transitions, and the success of any
visual plan and action plan from start to goal. Framework F-
L1 finds at least one visual action plan that makes the correct
prediction, however, the execution of the action is not perfect.
We therefore observe a lower overall system performance as
the re-planning can result in a premature termination.

Framework Syst. Trans. VFM APN
F-L1 80% 90% 100% 100%
F-L2 40% 77% 60% 60%
F-L∞ 24% 44% 56% 36%

Table III: Results (best in bold) for executing visual action plans on 5
folding tasks (each repeated 5 times). Different metrics are compared.

Finally, a re-planning example is shown in Fig. 4 where a
subset of the proposed visual action plans is shown (left). As
the goal configuration does not allude to how the sleeves are
to be folded, the LSR suggests all paths it identifies. After the
first execution, the re-planning (right) generates in a single
plan that leads from start to goal state.

VII. CONCLUSIONS AND FUTURE WORK

We proposed to build a Latent Space Roadmap which is
a graph-based structure in a low-dimensional latent space
capturing the latent transition dynamics in a data-efficient
manner. Our method consists of a Visual Foresight Module,
generating a visual plan from given start and goal states, and
an Action Proposal Network, predicting the corresponding
action plan. We showed the effectiveness of our method on
a simulated box stacking task as well as a T-shirt folding task,
requiring deformable object manipulation and performed with
a real robot. As future work, we plan to extend the scope of
the LSR to more domains such as Reinforcement Learning
and validate the approach on a wider set of tasks.

1https://visual-action-planning.github.io/lsr/

https://visual-action-planning.github.io/lsr/
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