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Abstract—Innate morphological characteristics of objects may
obfuscate the learning of robotic grasping. Even simple structures
(e.g. cyclical) offer a wide range of plausible grasping orienta-
tions, creating ambiguities for neural regressors. We investigate
and unfold multiple such conflicts on the challenging dataset
Jacquard and derive a novel grasp map representation, suitable
for pixel-wise synthesis. Our augmented maps disentangle co-
occurent grasping orientations around the same point by par-
titioning the angle space into multiple bins. Subsequently, we
propose the ORientation AtteNtive Grasp synthEsis (ORANGE)
framework, that jointly addresses classification into bins and
angle-value regression. The constructed bin-wise orientation
maps further serve as an attention mechanism for areas with
higher graspness, i.e. probability of being a true grasp point.
This procedure is model-agnostic and can be embedded to any
existing architecture to boost its performance. Namely, we report
a new state-of-the-art 94.71% performance on Jacquard, with a
simple U-Net using only depth images.

I. INTRODUCTION

Grasping inherently different objects in unstructured en-
vironments is an essential component of the skill-set that
robots shall excel in so as to be effectively integrated into
human-inhabited environments [1], [2]. The problem has been
explored both in an analytical [3] and data-driven fashion [4],
with Deep Learning (DL) assigning an increasing advantage
to the latter, powered by large datasets [5], [6] of common
graspable objects, suitable for robotic hands and grippers.

Several data-driven approaches have borrowed ideas from
computer vision to detect antipodal grasps on objects from
RGB data [7]. These approaches predict and rank thousands
of grasp candidates [8]–[10], requiring much computational
resources, while they are limited to static environments and
precise camera calibration. Other works rely on synthetic
depth data [11] or point clouds [12] to predict the robustness
of candidate grasps from depth images, possibly taking also
into account the gripper pose uncertainty. Very promising
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Figure 1: Overview of the ORANGE architecture. An augmented
grasp map representation, that fuses continuous and discrete inform-
ation, drives the transformation of the depth image into a set of
grasping boxes. The discretized orientation map serves as an attention
force that focuses on local maxima of graspness. Please refer to
Sec. III for a thorough explanation of the symbols used in this figure.

have recently been the pixel-wise approaches [13], [14], that
represent grasping configurations as dense maps.

Continuous and effective estimation of the approach vector,
i.e. the orientation with which the robotic hand approaches
the object, is fundamental to a safe and successful grasp
execution, especially for reactive grasp planning, either in
cases of a moving camera on the robotic arm, or when grasping
moving objects. Intuitively, when humans observe an object,
they reason about its shape and navigate their hand with
appropriate orientation and opening in order to perform the
grasp. However, even state-of-the-art pixel-wise approaches
fail to model ambiguities due to multiple overlapping grasping
boxes with different orientations.

To tackle these limitations, we present a novel orientation-
attentive method for predicting pixel-wise grasp configurations
from depth images. We revisit the grasp map representation by



introducing an augmented version for resolving orientations’
conflicts. We classify the grasps into discrete orientation
bins and regress their values for a continuous estimation
of the orientation per bin. This orientation map acts as a
bin-wise attention mechanism [15] over the quality map, to
guide the model’s focus on the true grasp points of the
object. The proposed method, named ORANGE (ORientation
AtteNtive Grasp synthEsis) (Fig. 1), is model-agnostic; it
can be combined with any approach capable of performing
segmentation, boosting its performance in generating accurate
grasp predictions. ORANGE surpasses all related methods on
Jacquard [6] using only the depth modality.

II. PROBLEM STATEMENT

Grasp synthesis refers to finding the optimal grasp configur-
ation g = {x,y,z,φ ,w,q}, containing the grasp center {x,y,z}
to which the robotic hand should be aligned, the orientation
φ around the z axis and the required fingers’ or jaws’ opening
(width) w. A quality measure q characterizes the success of
the respective grasp configuration. For a (depth) image I, grasp
synthesis is the problem of finding the grasp map [14]:

G = {Φ,Ω,Q} ∈ R3×H×W (1)

where Φ,Ω,Q are each of them a map in RH×W , containing
the pixel-wise values of φ ,w,q respectively. G can be ap-

proximated through a learnt mapping I f̂θ−→ G using a deep
neural network (θ being its weights). The best visible grasp
configuration can now be estimated as g∗ = argmax

Q
G.

III. REVISITING GRASP MAP REPRESENTATION

Real-world objects with peculiar morphology can be
grasped in multiple angles even around nearby physical points.
As a result, the constructed grasp maps of pixel-wise learning
approaches [14], [16], [17] are prone to discontinuities that
cause saturated performance (Fig. 2). Motivated by such
observations on the challenging Jacquard dataset [6], we
introduce an augmented grasp map representation that fuels
both the continuous grasping orientation regression problem
and a discrete classification problem.
The Jacquard Dataset: Jacquard is currently one of the most
diverse and densely annotated grasping datasets with 54000
images and 1.1 million grasp annotations. Grasps are repres-
ented as rectangles with given center, angle, width (gripper’s
opening) and height (jaws’ size). The annotations are sim-
ulated and not human-labeled, resulting into multiple over-
lapping boxes considering all possible grasp orientations per
grasp point and many different jaw sizes. To make matters
worse, box annotations are invariant to the jaws’ size, leaving
it as a free variable to be arbitrarily chosen during evaluation.

The authors of [14] tackle these challenges by generating
pixel-wise quality, angle and width maps, by iterating over the
annotated boxes and stacking binary maps, equal to the value
of interest inside the box and zero elsewhere. Since the quality
map is a binary map, the result of such stacking is indifferent
to the order of the boxes and equivalent to iterating only on
the boxes with the maximum jaws’ size. For angle and width
maps however, overlapping boxes with different centers and

Figure 2: IoU score across per threshold for three ground-truth maps:
GGCNN, ours with 3 orientation bins and 6 bins. The performance
of the proposed maps saturates smoothly towards larger thresholds,
demonstrating a more robust representation of the annotations.

angles will be overwritten by the box that appears later in the
annotations, leading to discontinuities. Lastly, a binary quality
map does not ensure a valid maximum: all non-center points
inside an annotated box are maxima as well, and have equal
probability of being selected as a grasp center.

Due to all these choices, a hypothetical regressor that per-
fectly predicts the evaluation ground-truth maps fails to recon-
struct the annotated bounding boxes and scores only ∼ 96.2%
using the Jaccard (IoU) index at the 0.25 threshold, while
its performance degrades rapidly towards larger thresholds
(Fig. 2). Not surprisingly, this performance is not invariant
to shuffling the order we access the annotations.
Focusing on Orientation: To tackle the above challenges, we
partition the angle values into N bins, to minimize the overlaps
of annotated boxes. Since we are dealing with antipodal
grasps, it is sufficient to predict an angle in the range of
{−π/2,π/2}. We, thus, proceed to construct 3-dimensional
maps of size H×W×N, where each bin corresponds to a range
of 180/N degrees. Note that we do not discretize the angles’
values; we instead place them inside the corresponding bins.
For the remaining overlaps, we pick the value corresponding
to the smallest angle, ensuring that the network is trained on
a valid ground-truth angle value, instead of some statistics
of multiple values (e.g. mean or median), while remaining
invariant to the order of the annotations.

To overcome the information loss on the construction of
binary maps, we create soft quality maps that contain ones
on the exact positions of the centers of the boxes, while their
values degrade moving towards the boxes’ edges (Fig. 3). We
find that this is significant for the trained networks to learn to
maximize the quality value on the grasp points.

One remaining issue is the multiple instances of the same
grasp centers and angles using different jaw sizes. We pick the
smallest size, closer to the boundaries of the objects’ shape.
Intuitively, the annotated quality map gives a rough estimate
of the segmentation mask (Fig. 3), information important for
extracting grasp regions [14]. During evaluation, we adopt the
half jaw size presented in [14] to be directly comparable. Al-
though having to estimate such a parameter hurts performance,
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Figure 3: Comparison of the target representation for GGCNN
(left column) and the proposed 3-bin method (right 3 columns).
GGCNN maps suffer from highly overlapping boxes that lead to
discontinuities, while their binary quality map is a dense region
that lies further than the object’s boundaries. Contrary to that, our
maps are sparse and clear from overlaps, while the quality maps
contain rigid areas with a well-defined maximum. Our “graspness”
map roughly approximates the object’s segmentation mask.

our approach still achieves large reconstruction ability.
We thus reformulate Eq. (1) to consider N orientation bins:

G = {Φ,Ω,Q,O,Γ} ∈ R(4×N)+1×H×W (2)

where Φ ∈ RN×H×W is the angle map. To facilitate learn-
ing, we adopt the angle encoding suggested by [14], [18]
into the cosine, sine components that lie in the range of
[−1,1]. Since the antipodal grasps are symmetrical around
±π

2 , we employ the sub-maps for cos(2Φi) and sin(2Φi)
∀Φi with i ∈ N bins. The angle maps are then computed
as: Φ = 1

2 arctan sin(2Φ)
cos(2Φ) . Ω∈RN×H×W represents the gripper’s

width map. Q ∈RN×H×W , is a real-valued quality map, where
‘1’ indicates a grasp point with maximum visible quality.
O ∈ RN×H×W is a binary orientation map where ‘1’ indicates
a filled angle bin in the respective position. Γ ∈ R1×H×W is
the pixel-wise ‘graspness’ map. This binary map contains ‘1s’
only in the annotated grasp points of the object w.r.t. the image
I, and helps assessing the graspability of the pixels, i.e. the
probability of representing grasp points of the real world.
ORANGE: Orientation-attentive grasp synthesis: The pro-
posed framework, ORANGE is depicted in Fig. 1. ORANGE is
model-agnostic; it suffices to employ any CNN-based model
that has the capacity to segment regions of interest.

Assuming such a model, an initial depth image is processed

Figure 4: A closer look to quality map reconstruction. The regressed
Q is noisy, but multiplication by Γ smooths the quality map pixel-
wise, while O filters outliers bin-wise. The final estimation is much
clearer and closer to the ground-truth.

to output an augmented grasp map G, as defined in (2).
Φ, Ω, Q, O and Γ are combined to reconstruct the center,
angle and width information. We employ two off-the-shelf
architectures, GGCNN2 [14] and the larger U-Net [19], both
able of performing segmentation. While these architectures
have totally different capacity, we show that both can perform
significantly better when trained under the ORANGE frame-
work.

Training: Each map is separately supervised: we min-
imize the Mean Square Error (MSE) of the real-valued
Q, cos(2Φ), sin(2Φ) and Ω and their respective ground-
truths, and we force a Binary Cross-Entropy loss (BCE) on
O and Γ. Next, we employ an attentive loss that directly min-
imizes the MSE between Q∗O (element-wise multiplication)
and the ground-truth quality map. This attention mechanism
drives the network’s focus over regions of the feature map
that correspond to filled bins and thus regions nearby a valid
grasp center. We found it useful to scale the MSE losses
by multiplying them with the number of bins N. The total



Design Choices Threshold
Network regression graspness bin class. attention binary map max jaw size min jaw size N = 3 N = 6 0.25 0.30

U-Net [19] 94.71 92.65
91.51 89.07
92.34 90.44
93.36 90.90
94.11 91.83
91.75 90.27
89.85 88.13

GGCNN2 [14] 88.92 85.94
87.88 85.52
85.23 82.67

Table I: Ablation study over different design choices for both ORANGE implementations with U-Net and GGCNN2.

objective function takes the form:

L = LBCE(O)+LBCE(Γ)

+N ∗{LMSE(Q)+LMSE(cos(2Φ))+LMSE(sin(2Φ))

+LMSE(Ω)+LMSE(Q∗O)}
(3)

Inference: First, Q and Γ are multiplied to obtain a graspness-
refined quality map. This can be viewed as a pixel-wise prior
regularization, where Γ is the prior probability of a pixel to be
a grasping point and Q is the posterior, measuring its grasping
quality. This product is multiplied by O to filter out values
in empty bins, resulting in the final quality map, Q ∗Γ ∗O.
Finally, we choose the optimum grasping center as the global
maximum of the quality map and retrieve the respective values
of Φ and Ω to reconstruct a grasping box.

IV. EXPERIMENTS & DISCUSSION

We validate ORANGE on Jacquard, following the standard
90/10% split without any data augmentation. Depth images are
resized into 320×320, to speed training up. Following prior
literature, we report IoU@0.25 and 0.30.
Ablation study: We inspect the different combinations of the
individual components of ORANGE in Table I, employing U-
Net as the base model, as it has more capacity to absorb the
multiple grasp representations. Our full proposed model, with
the pixel-wise graspness and the bin-wise orientation attention,
performs better when using 3 bins compared to 6 for the
lower threshold, since discretizing the angle space into N bins
means N regressions for the model to learn and N classes
to identify. In particular for the angle range of {−π/2,π/2}
in the antipodal grasps, the N = 6 discretization, divides into
bins of 30o range, i.e. there are smaller differences in the
appearances among neighboring orientations, while it requires
25 regressions, making it more difficult to disentangle the
multiple grasping orientations.

Moreover, the application of the pixel-wise graspness Γ on
the quality maps Q has an evident benefit on the model, since
it focuses on the most prominent grasp points and restricts the
exploration of the feature space, thus decreasing the grasp box
area and more precisely localizing the grasp center (Fig. 4).

The selection of the jaw size during the construction of the
ground truth maps also affects the performance of ORANGE
over both thresholds, confirming that picking the minimum
leads to more accurate predictions, as it produces bounding
boxes closer to the object’s boundaries.

methods modality IoU@0.25 (%)

Morrison et al. [14] D 85.2
Depierre et al. [6] RGB-D 74.2
Zhou et al. [8] RGB 91.8
Zhou et al. [8] RGD 92.8
Zhang et al. [9] RGB 90.4
Zhang et al. [9] RGD 93.6
ORANGE with GGCNN2 (ours) D 88.9
ORANGE with U-Net (ours) D 94.7

Table II: Comparative results on the Jacquard dataset.

An important decision choice is whether to use binary val-
ues for the quality maps in the ground truth data synthesis [14].
Using binary maps in ORANGE produces 4% less accurate
grasp predictions w.r.t. to our approach. However, ORANGE
achieves an IoU@0.25 of 91.75% (although 3% lower than
using our approach), while a U-Net implemented as suggested
in [14], succeeds a 89.85% at the 0.25 IoU threshold.

Lastly, we also improve GGCNN2 from 85.23% in the ori-
ginal implementation into 88.92% using ORANGE, confirming
ORANGE’s model-agnostic character.
Comparing to previous works: Pure depth-based ORANGE
outperforms all existing approaches on Jacquard (Table II) to
achieve a new state-of-the-art of 94.7% IoU@0.25, improving
by an absolute 1.1% the main competitor [9], that uses multi-
modal RGD data. Both the augmented grasp map representa-
tion and the bin-wise attention of the orientation estimation
over the quality maps, are major factors of performance.
We expect even better performance if we also use the RGB
channel, however this is beyond the scope of our work that
focuses on improving the grasp map representation.

V. CONCLUSIONS & FUTURE WORK

We discuss and address the problem of multiple orientations
per grasping point on the Jacquard dataset. Our method,
ORANGE, jointly solves an angle-bin classification and real-
value angle regression, while exploiting the former to guide
a graspness attention mechanism over the grasp quality map.
Extensive experimental results justify the effectiveness of OR-
ANGE components, that achieves state-of-the-art performance
using only the depth modality. An interesting future direction
is to jointly reason about the objects’ grasping points, shape
and category. The quality of the generated grasps can also be
ranked in an adversarial setting, while interacting with real
objects, to learn to identify task-related grasp points.
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