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Abstract—Learned dynamics models combined with both plan-
ning and policy learning algorithms have shown promise in
enabling artificial agents to learn to perform many diverse
tasks with limited supervision. However, one of the fundamental
challenges in using a learned forward dynamics model is the
mismatch between the objective of the learned model (future
state reconstruction), and that of the downstream planner or
policy (completing a specified task). This issue is exacerbated
by vision-based control tasks in diverse real-world environments,
where the complexity of the real world dwarfs model capacity. In
this paper, we propose to direct prediction towards task relevant
information, enabling the model to be aware of the current task
and encouraging it to only model relevant quantities of the state
space, resulting in a learning objective that more closely matches
the downstream task. Further, we do so in an entirely self-
supervised manner, without the need for a reward function or
image labels. We find that our method more effectively models
the relevant parts of the scene conditioned on the goal, and as a
result outperforms standard task-agnostic dynamics models and
model-free reinforcement learning.

I. INTRODUCTION

Enabling artificial agents to learn from their prior experience
and generalize their knowledge to new tasks and environments
remains an open and challenging problem. Unlike humans,
who have the remarkable ability to quickly generalize skills
to new objects and task variations, current methods in multi-
task reinforcement learning require heavy supervision across
many tasks before they can even begin to generalize well.
One way to reduce the dependence on heavy supervision
is to leverage data that the agent can collect autonomously
without rewards or labels, termed self-supervision. One of the
more promising directions in learning transferable knowledge
from this unlabeled data lies in learning the dynamics of the
environment, as the physics underlying the world are often
consistent across scenes and tasks. However learned dynamics
models do not always translate to good downstream task
performance, an issue which we study and attempt to mitigate
in this work.

To that end, we propose goal-aware prediction (GAP), a
framework for learning forward dynamics models that direct
their capacity differently conditioned on the task, resulting in
a model that is more accurate on trajectories most relevant to
the downstream task. Specifically, we propose to learn a latent
representation of not just the state, but both the state and goal,
and to learn dynamics in this latent space. Furthermore, we
can learn this latent space in a way that focuses primarily on
parts of the state relative to achieving the goal, namely by

reconstructing the goal-state residual instead of the full state.
We find that this modification combined with training via goal-
relabeling [1]] allows us to learn expressive, task-conditioned
dynamics models in an entirely self-supervised manner. We
observe that GAP learns dynamics that achieve significantly
lower error on task relevant states, and as a result outperforms
standard latent dynamics model learning and self-supervised
model-free reinforcement learning [4] across a range of vision
based control tasks.
II. RELATED WORK

One area of past work significantly related to our work
is self-supervised reinforcement learning, where an agent
leverages data it collected autonomously to learn meaningful
behaviors. Another related area is model-based reinforcement
learning, where the agent learns a model of the dynamics of
an environment, and uses it to complete a task. Lastly, like
our work which studies the relationship between model error
and task performance, several prior works have also explored
studying model errors and learning better models for specific
tasks. We discuss the related work in each of these areas in
depth in the supplement.

ITI. GOAL-AWARE PREDICTION

We consider a goal-conditioned RL problem setting (de-
scribed next), for which we utilize a model-based reinforce-
ment learning approach. The key insight of this work stems
from the idea that the distribution of model errors greatly
affects task performance and that, when faced with limited
model capacity, we can control the distribution of errors to
achieve better task performance. We theoretically and empir-
ically investigate this effect in Sections [lII-Bf and empirically
in the supplement before describing our approach for skewing
the distribution of model errors in Section
A. Preliminaries

We formalize our problem setting as a goal-conditioned
Markov decision process (MDP) defined by the tuple
(S, A,p,G,\) where s € S is the state space, a € A
is the action space, p(siy1|st, ar) governs the environment
dynamics, p(sg) corresponds to the initial state distribution,
G C S represents the unknown set of goal states which is a
subset of possible states, and A is the discount factor. Note that
this is simply a special case of a Markov decision process,
where we do not have access to extrinsic reward (i.e. it is
self-supervised), and where we separate the state and goal for
notational clarity.
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Fig. . Goal-Aware Prediction: Our proposed method, goal-aware
prediction (GAP), encodes both the current state s; and goal s, into
a single latent space z:. Samples from the distribution of z; are then
used to reconstruct the residual between the current state and goal
54 — s¢. Simultaneously, we learn the forward dynamics in the latent
space z, specifically, learning to predict z¢41 from 2; and a;. Using
this approach, we obtain 2 favorable properties: (1) the latent space
only needs to capture components of the scene relevant to the goal,
and (2) the prediction task becomes easier (the residual approaches
0) for states closer to the goal.

We will assume that the agent has collected an unlabeled
dataset D that consists of N trajectories [ry,...,7n], and
each trajectory 7 consists of a sequence of state action
pairs [(so, a0), ($1,@1), ..., (s7)]. We will denote the estimated
distance between two states as C(s, s4) = ||st — 543, which
may not accurately reflect the true distance, e.g. when states
correspond to images. At test time, the agent is initialized at a
start state so ~ p(sg) with a goal state s, sampled at random
from G, and must minimize cost C(s;,s,). We assume that
for any states s;, s, we can measure C(s, s4) as the distance
between the states, for example in image space C would be
pixel distance. Success is measured as reaching within some
true distance of s,.

In the model-based RL setting we consider here, the agent
aims to solve the RL problem by learning a model of the
dynamics pg(sit1|st,a:) from experience, and using that
model to plan a sequence of actions or optimize a policy.

B. Understanding the Effect of Model Error on Task Perfor-

mance

A key challenge in model-based RL is that dynamics pre-
diction error does not directly correspond to task performance.
Specifically, for good task performance, certain model errors
may be more costly than others, and if errors are simply
distributed uniformly over dynamics predictions, errors in
these critical areas may be exploited when selecting actions
downstream. Intuitively, when optimizing actions for a given
task, we would like our model to to give accurate predictions
for actions that are important for completing the task, while
the model likely does not need to be as accurate on trajectories
that are completely unrelated to the task. In this section, we
formalize this intuition.

Suppose the model is used by a policy to select from
N action sequences a‘., each with expected final cost
¢; = Ep(s,,1|s0.a).at, [C(5T, Sg)]. Without loss of generality,
let ¢ < c3... < ¢y, ie. the order of action sequences
is sorted by their cost under the true model, which is un-
known to the agent. Denote ¢; as the predicted final cost
of action sequence ai., under the learned model, i.e. ¢ =
By (sp1]s0,a0),a1 . [C(ST, 84)]. Moreover, we consider a policy
that simply selects the action sequence with lowest cost under
the model: 4 = arg minai:T ¢;. Let the policies behavior be
e-optimal if the cost of the selected action sequence ai. has
cost ¢; < c¢] + €. Under this set-up, we now analyze how

model error affects policy performance.

Theorem II1.1. The policy will remain e-optimal, that is,

¢ <ci+e i =argming (1)
K3

if the following two conditions are met: first, that the model
prediction error on the best action sequence a} . is bounded
such that .

el —é1) <€ ()
and second, that the errors of sub-optimal actions sequences
ai.p are bounded by

lef —&| < (cf—cf)—€e Vil >ci+e 3)

Proof in supplement. Theorem suggests that, for good
task performance, model error must be low for good trajec-
tories, and we can afford higher model error for trajectories
with higher cost. That is, the greater the trajectory cost, the
more model error we can afford. Specifically, we see that
the allowable error bound on cost of an action sequence from
a learned model scales linearly with how far from optimal that
action sequence is, in order to maintain the optimal policy for
the downstream task. Note, that while Theorem [lII.1] relates
cost prediction error (not explicitly dynamics prediction error)
to planning performance, we can expect dynamics prediction
error to relate to the resulting cost prediction error. We also
verify this empirically in the supplement.

C. Redistributing Model Errors with Goal Aware Prediction

We propose goal-aware prediction (GAP) as a technique to
re-distribute model error by learning a model that, in addition
to the current state and action, s; and a;, is conditioned on
the goal state s, and instead of reconstructing the future state
S¢+1, reconstructs the difference between the future state and
the goal state, that is: ps((sg — S¢41)|8¢, Sg,a¢). Critically,
to train GAP effectively, we need action sequences that are
relevant to the corresponding goal. To accomplish this, we can
choose to set the goal state for a given action sequence as the
final state of that trajectory, i.e. using hindsight relabeling [1].
Specifically, given a trajectory [(s1,a1), ($2,a2), ..., (s7)], the
goal is assigned to be the last state in the trajectory s, = s,
and for all states {s;|1 <¢ <T —1}, pg(sq, sg,as) is trained
to reconstruct the delta to the goal sy — s411.

Our proposed GAP method has two clear benefits over
standard dynamics models. First, assuming that the agent is
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1000 random action sequences, evaluated on the “Task 1” domain. The y-axis are corresponds to model mean-squared error (with standard
error bars), and the x-axis corresponds to number of time steps predicted forward. Naturally, we observe that model error increases as the
prediction horizon increases, for all approaches. However, although all approaches have a similar error over all 1000 action sequences (left),
GAP achieves significantly lower error on the best 10 trajectories (right). This suggests that changing the model objective through predicting
the goal-state residual leads to more accurate predictions in areas that matter in downstream tasks.

not in a highly dynamic scene with significant background
distractor motion, by modeling the delta between s, and s;, pg
only needs to model components of the state which are relevant
to the current goal. This is particularly important in high
dimensional settings where there may be large components
of the state which are irrelevant to the task, and need not be
modeled. Second, states s; that are temporally close to the
goal state s; will have a smaller delta s, — s;, approaching
zero along the trajectory until s, = s,. As a result, states
closer to the goal will be easier to predict, biasing the model
towards low error near states relevant to the goal. In light
of our analysis of model error in the previous sections, we
hypothesize that this model will lead to better downstream task
performance compared to a standard model that distributes
errors uniformly across trajectories.

IV. EXPERIMENTS

In our experiments, we investigate three primary questions

(1) Does using our proposed technique for goal-aware pre-
diction (GAP) re-distribute model error such that predictions
are more accurate on good trajectories?

(2) Does re-distributing model errors using GAP result in
better performance in downstream tasks?

(3) Can GAP be combined with large video prediction
models to scale to the complexity of real world images?

We design our experimental set-up with these questions in
mind in Section then examine each of the questions in
Sections [IV-B} [[V-C| and [TV-D] respectively.

A. Experimental Domains and Comparisons

Experimental Domains: Our primary experimental domain
is a simulated tabletop manipulation task built off of the Meta-
World suite of environments [5]. Specifically, it consists of a
simulated Sawyer robot, and 3 blocks on a tabletop. In the self-
supervised data collection phase, the agent executes a random
policy for 2,000 episodes, collecting 100,000 frames worth of
data. Then, after learning a model, the agent is tested on 4
previously unseen tasks, where the task is specified by a goal
image. Details on tasks can be found in the supplement.

Comparisons: We compare our method GAP, to the Stan-
dard latent dynamics approach, an ablation GAP (-Goal
Cond) which predicts residuals from the initial state, GAP (-
Residual) and ablation that conditions on goals but keeps the
standard objective, as well as model free RIG and dynamics
learned via an action prediction loss termed Inverse Model.
Further implementation details can be found in the supplement.

B. Experiment 1: Does GAP Favorably Redistribute Model

Error?

In our first set of experiments, we study how GAP affects
the distribution of model errors, and if it leads to lower
model error on task relevant trajectories. We sample 1000
random action sequences of length 15 in the Task 1 domain.

We compute the true next states s%: H,...,s%?}}o and costs

ct,...,ct%% for each action sequence by feeding it through
the true simulation environment. We then get the predicted
next states from our learned models, including GAP as well
the comparisons outlined above. We then examine the model
error of each approach, and how it changes when looking at
all trajectories, versus the lowest cost trajectories.

We present our analysis in Figure 2] We specifically look
at the model error on all 1000 action sequences, the top 100
action sequences, and the top 10 action sequences. First, we
observe that model error increases with the prediction horizon,
which is expected due to compounding model error. More
interestingly, however, we observe that while our proposed
GAP approach has the highest error averaged across all 1000
action sequences, it has by far the lowest error on the top
10. This suggests that the goal conditioned prediction of the
goal-state residual indeed encourages low model error in the
relevant parts of the state space. Furthermore, we see that the
conditioning on and reconstructing the difference to the actual
goal is in fact critical, as the ablation GAP (-Goal Cond) which
instead is conditioned on and predicts the residual to the first
frame actually gets worse error on the lowest cost trajectories.

This indicates that GAP successfully re-distributes error
such that it has the most accurate predictions on low-cost
trajectories. We also observe this qualitatively in Figure ] For
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GAP+SVG Video Prediction (BAIR Robot Dataset): Here we present qualitative examples of action-conditioned SVG with and

without GAP on the BAIR robot dataset, predicting on goal-reaching trajectories. Note, in the GAP predictions the goal is added back to
the predicted goal-state residual. In this case the goal is the rightmost frame. We see that GAP is able to more accurately predict the objects
relevant to the goal, for example the small spoon highlighted in the red box.
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Fig. 4. GAP Predictions on Good/Bad Trajectories. Here we
show qualitatively how GAP focuses on the task relevant parts of the
scene. Note, for GAP predictions we add back the goal image to the
predicted goal-state residual. Given the task specified by pushing the
green block (top), consider a good action sequence (middle) and bad
action sequence (bottom). On the good action sequence GAP more
effectively models the goal relevant parts of the scene (the green
block) than the standard model. Additionally, on the bad trajectory,
GAP ignores the irrelevant objects and does not model their dynamics
at all, while the standard model does.

a given initial state and goal state from Task 1, GAP effectively
models the target object (the green block) on a good action
sequence that reaches the goal, while the standard model
struggles. On a poor action sequence that hits the non-target
blocks, the Standard approach models them, while GAP does
not model interaction with these blocks at all, suggesting
that GAP does not model irrelevant parts of the scene. In the
next section, we examine if this error redistribution translates
to better task performance.
C. Experiment 2: Does GAP Lead to Better Downstream Task

Performance?

To study downstream task performance, we test on the
tabletop manipulation tasks described in Section [V-A] We
perform planning over 30 timesteps with the learned models

Performance on Visual Tabletop Manipulation
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Fig. 5. Success rate on tabletop manipulation. On the tasks
proposed in Section [[V-A] we find that GAP outperforms the com-
parisons. Specifically on the harder 2 block manipulation task, GAP
has a significantly higher success rate.
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as described in Section [[II} and report the final success rate
of each task over 200 trials in Figure [5] We see that in all
tasks GAP outperforms the comparisons, especially in the most
challenging 2 block manipulation task in Task 2 (where precise
modeling of the relevant objects is especially important).

Hence, we can conclude that GAP not only enables lower
model error in task relevant states, but by doing so, also
achieves a 10-20% absolute performance improvement over
all other methods on 3 out of 4 tasks.

D. Experiment 3: Does GAP scale to real, cluttered visual
scenes?

Lastly, we study whether our proposed GAP method extends
to real, cluttered visual scenes. To do so we combine it with
an action-conditioned version of the video generation model,
SVG [2]. Specifically, we condition the SVG encoder on the
goal, and the current goal-state residual, and predict the next
goal-state residual. We see that SVG+GAP is able to more
effectively capture goal relevant components on the BAIR
Robot Dataset [3]], as shown in Figure 3] and gets lower test
error on goal reaching trajectories (Supplement).

As a result, we conclude that GAP can effectively be
combined with large video prediction models, and scaled to
challenging real visual scenes.
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