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A. Related Work
Recent years have seen impressive results from reinforce-

ment learning [58] applied to challenging problems such as
video games [41, 46], Go [56], and robotics [38, 47, 34].
However, the dependence on large quantities of labeled data
can limit the applicability of these methods in the real world.
One approach is to leverage self-supervision, where an agent
only uses data that it can collect autonomously.

Self-Supervised Reinforcement Learning: Self-supervised
reinforcement learning explores how RL can leverage data
which the agent can collect autonomously to learn meaningful
behaviors, without dependence on task specific reward labels,
with promising results on tasks such as robotic grasping
and object re-positioning [50, 16, 68]. One approach to self-
supervised RL has been combining goal-conditioned policy
learning [33, 54, 9] with goal re-labeling [4] or sampling
goals [44, 43]. While there are numerous ways to leverage
self-supervised data, ranging from learning distance metrics
[67, 29], generative models over the state space [35, 18, 17,
39, 45], and representations [60], one of the most heavily
utilized techniques is learning the dynamics of the environment
[64, 20, 1].

Model-Based Reinforcement Learning: Learning a model
of the dynamics of the environment and using it to complete
tasks has been a well studied approach to solving reinforce-
ment learning problems, either through planning with the
model [11, 64, 40, 6, 8, 2, 28, 42] or optimizing a policy in
the model [51, 25, 70, 37, 32, 63, 27, 24, 7]. Numerous works
have explored how these methods might leverage deep neural
networks to extend to high dimensional problem settings,
such as images. One technique has been to learn large video
prediction models [20, 5, 15, 16, 49, 36, 61, 65], however
model under-fitting remains an issue for these approaches
[10]. Similarly, many works have explored learning low di-
mensional latent representations of high dimensional states
[64, 14, 69, 28, 35, 31, 62, 37, 23] and learning the dynamics
in the latent space. Unlike these works, we aim to make the
problem easier by encouraging the network to predict only
task-relevant quantities, while also changing the objective, and
hence the distribution of prediction errors, in a task-driven
way. This allows the prediction problem to be more directly
connected to the downstream use-case of task-driven planning.

Addressing Model Errors: Other works have also studied
the problem of model error and exploitation. Approaches
such as ensembles [8, 59] have been leveraged to measure
uncertainty in model predictions. Similarly, Janner et al. [32]
explore only leveraging the learned model over finite horizons
where it has accurate predictions and Levine et al. [38] use
local models. Exploration techniques can also be used to
collect more data where the model is uncertain [48].

Most similar to our proposed approach are techniques
which explicitly change the models objective to optimize
for performance on downstream tasks. [55, 30] explore only
predicting future reward to learn a latent space in which
they learn dynamics, Freeman et al. [22] learn a model
with the objective of having a policy achieve high reward
from training in it, and Amos et al. [3], Srinivas et al. [57]
embed a model/planner inside a neural network. Similarly,
Farahmand et al. [19], D’Oro et al. [13] explore how model
training can be re-weighted using value functions or policy
gradients to emphasize task specific performance. Unlike these
works, which depend heavily on task-specific supervision, our
proposed approach can be learned on purely self-supervised
data, and generalize to unseen tasks.

B. Method Implementation Details
In this section we go over implementation details for our

method as well as our comparisons.

1) Implementing Goal-Aware Prediction
We implement GAP with a latent dynamics model. Given

a dataset of trajectories [τ1, ..., τN ], we sample sequences
of states [(s1, a1), ..., (sT )] where we re-label goal for the
trajectory as sg = sT .

The GAP model consists of three components, (1) an
encoder fenc(zt|st, sg; θenc) that encodes the state st and
goal sg into a latent space zt, (2) a decoder fdec(sg −
st|zt; θdec) that decodes samples from the latent distribution
into sg − st, and (3) a forward dynamics model in the latent
space fdyn(zt+1|zt, at; θdyn) which learns to predict the future
latent distribution over zt+1 from zt and action at. In our
experiments we work in the setting where states are im-
ages, so fenc(zt|st, sg) and fdec(sg − st|zt) are convolutional
neural networks, and fdyn(zt+1|zt, at) is a fully-connected
network. The full set of parameters θ = {θenc, θdec, θdyn}



are jointly optimized. Exact architecture and training details
for all modules can be found in the supplement. Following
prior works [21, 20, 2], we train for multi-step prediction.
More specifically, given st, at:t+H , sg , the model is trained to
reconstruct (sg − st), ..., (sg − st+H).

Data Collection and Model Training: In our self-
supervised setting, data collection simply corresponds to
rolling out a random exploration policy in the environment.
Specifically, we sample uniformly from the agent’s action
space, and collect 2000 episodes, each of length 50, for a
total of 100,000 frames of data.

During training, sub-trajectories of length 30 time steps are
sampled from the data set, with the last timestep labeled as
the goal sg = s30. Depending on the current value of H ,
loss is computed over H step predictions starting from states
st:(t+H). We use a curriculum when training all models, where
H starts at 0, and is incremented by 1 every 50,000 training
iterations. All models are trained to convergence, for about
300, 000 iterations on the same dataset.

Planning with GAP: For all trained models, when given
a new goal at test time sg , we plan using model predictive
control (MPC) in the latent space of the model. Specifically,
both the current state st and sg are encoded into their
respective latent spaces zt and zg (Algorithm 1, Line 3).

Algorithm 1 Latent MPC(fenc, fdyn, st, sg)

1: Let D = 1000, D∗ = 10, H = 15
2: Receive current state st and goal state sg
3: Encode zt ∼ fenc(st, sg), zg ∼ fenc(sg, sg)
4: Initialize N(µ, σ2) = N (0, 1)
5: Let cost function C(zi, zj) = ||zi − zj ||22
6: while iterations ≤ 3 do
7: a1t:H , ..., a

D
t:H ∼ N(µ, σ2)

8: z1t+1:t+H , ..., z
D
t+1:t+H ∼ fdyn(zt, a1t:H , ..., aDt:H)

9: ĉ1, ..., ĉD = [
∑H

h=1 C(z
1
t+h, zg), ...,

∑H
h=1 C(z

D
t+h, zg)]

10: asorted = Sort([a1t:H , ..., a
D
t:H ]) by ĉ

11: Refit µ, σ2 to asorted[1 : D∗]
12: end while
13: Return ĉsorted[1], asorted[1]

Then using the model fdyn(zt+1|zt, at), the agent plans a
sequence of H actions to minimize cost

∑H
h=0 ||zg − zt+h||22

(Algorithm 1, Lines 4-11). Following prior works [20, 28], we
use the cross-entropy method [52] as the planning optimizer.
Finally, the best sequence of actions is returned and executed
in the environment (Algorithm 1, Line 13).

While executing the plan, our model re-plans every H
timesteps. That is, it starts at state st, uses Latent MPC
(Algorithm 1) to first plan a sequence of H actions, executes
them in the environment resulting in a state st+H , then re-
plans an additional H actions, and executes them resulting
in a final state sT . Success is computed based the difference
between sT and sg .

2) Architecture Details
Block/Door Domain: All comparisons leverage a nearly

identical architecture, and are trained on an Nvidia 2080 RTX.
In the block pushing domain input observations are [64,64, 6]

in the case of our model (GAP), as well as the ablations, and
[64,64, 3] in the case of Standard.

All use an encoder fenc with convolutional layers (channels,
kernel size, stride): [(32, 4, 2), (32, 3,1), (64, 4, 2), (64, 3,1),
(128, 4, 2), (128, 3,1), (256, 4, 2), (256, 3,1)] followed by
fully connected layers of size [512, 2 ×L] where L is the size
of the latent space (mean and variance). All layers except the
final are followed by ReLU activation.

The decoder fdec takes a sample from the latent space of
size L, then is fed through fully connected layers [128, 128,
128], followed by de-convolutional layers (channels, kernel
size, stride): [(128, 5, 2), (64, 5, 2), (32, 6, 2), (3, 6,2)]. All
layers except the final are followed bu ReLu activation, except
the last layer which is a Sigmoid in the case of Standard, and
GAP (-Residual).

For all models the dynamics model fdyn are a fully con-
nected network with layers [128, 128, 128, L], followed by
ReLU activation except the final layer.

The inverse model baseline utilizes the same fenc and fdyn
as above, but fdec is instead a fully connected network of size
[128, 128, action size] where action size is 4 (corresponding
to delta x,y, z motion and gripper control). All layers except
the final are followed by ReLU activation.

Lastly, the RIG [44] baseline uses a VAE with identical
fenc and fdec to the standard approach above, except learns a
policy in the latent space. The policy architecture used is the
default SAC [26] from RLkit, namely 2 layer MLPs of size
256.

SVG+GAP: In all SVG [12] based experiments on real
robot data, the architecture used is identical to the SVG
architecture as described in official repo1 with the VGG
encoder/decoder. All BAIR dataset experiments take as input
sequences of 2 frames and predict 10 frames, while all
RoboNet experiments take as input 2 frames and predict 20
frames. The latent dimension is 64, and the encoder output
dimension is 128. All models are trained with batch size 32.
3) Training Details

Block/Door Domain: We collect a dataset of 2,000 trajec-
tories, each 50 timesteps with a random policy. All models
are trained on this dataset to convergence for roughly 300,000
iterations. All models are trained with learning rate of 1e-4,
and batch size 32.

The RIG baseline is trained using the default SAC example
parameters in RLkit, for an additional 3 million steps.

BAIR Robot Dataset: We train on the BAIR Robot Dataset
[15] as done in the original SVG paper, except with action
conditioning.

RoboNet: We train on the subset of the RoboNet dataset
which considers only the sawyer arm and the front facing
camera view, and use a random 80/20 train test split.
4) Task/Evaluation Details

Tasks. All tasks are defined in a Mujoco simulation built
off the Meta-World environments [66]. In Task 1, the agent
must push a single block to a target position, as specified by a

1https://github.com/edenton/svg

https://github.com/edenton/svg


Task�1 Task�Ó Task�3 Task�4

Fig. 1. Evaluation Tasks: Sample initial & goal states for each of
the simulated manipulation tasks. Tasks involve manipulating blocks
or a door, with the task specified by a goal image.

goal image. The task involves either pushing the pink, green, or
blue block. Success if defined as being within 0.08 of the goal
position. In Task 2 the agent must push 2 blocks, specifically
the green and blue block to their respective goal positions,
again indicated by a goal image. Success is determined as both
blocks being within 0.1 of their respective goal positions. In
Tasks 3 and 4 the agent must close or open a door, as specified
by a goal image, where success is definged as being within
π/6 radians of the goal angle.

Evaluation. During all control experiments, evaluation is
done using model predictive control with the latent space
dynamics model. Specifically, we do latent MPC as described
in Algorithm 1, specifically by planning 15 actions, executing
them in the environment, then planning 15 more actions and
executing them. Each stage of planning uses the cross entropy
method, specifically sampling 1000 action sequences, sorting
them by the mean latent distance cost to the goal, refitting to
the top 10, and repeating 3 times, before selecting the total
lowest cost action.

5) Experimental Comparisons
Comparisons: We compare to several model variants in our

experiments. GAP is our approach of learning dynamics in a
latent space conditioned on the current state and goal, and
reconstructing the residual between the current state and goal
state. GAP (-Goal Cond) is an ablation of GAP that does
not use goal conditioning. Instead of conditioning on the goal
and predicting the residual to the goal, it is conditioned on the
initial state, and predicts the residual to the initial state. This
is representative of prior works (e.g. Nagabandi et al. [42])
that predict residuals for model-based RL. GAP (-Residual)
is another ablation of GAP that is conditioned on the goal
but maintains the standard reconstruction objective instead of
the residual. This is similar to prior work on goal conditioned
video prediction [53]. Standard refers to a standard latent
dynamics model, representative of approaches such as PlaNet
[28], but without reward prediction since we are in the self-
supervised setting.

When studying task performance, we also compare to two
alternative self-supervised reinforcement learning approaches.
First, we compare to an Inverse Model, which is a latent
dynamics model where the latent space is learned via an
action prediction loss (instead of image reconstruction), as

done in Pathak et al. [48]. Second, we compare to a model-free
approach: reinforcement learning with imagined goals (RIG)
[44], where we train a VAE on the same pre-collected dataset
as the other models, then train a policy in the latent space
of the VAE to reach goals sampled from the VAE. Further
implementation details can be found in the supplement.

C. Additional Results
1) Theorem 3.1 Proof

Proof: For the specified policy, violating ε-optimality will
only occur if the cost of the best action sequence a11:T is
overestimated or if the cost of a sub-optimal action sequence
(i | c∗i > c∗1 + ε) is underestimated. Thus, let us define the
”worst case” cost predictions as the ones for which c∗1 is most
overestimated and c∗i ∀i | c∗i > c∗1+ε are most underestimated
(while still satisfying Equations 2 and 3). Concretely we write
the worst case cost estimates as

c̃i := min ĉi ∀i | c∗i > c∗1 + ε

c̃1 := max ĉ1

s.t. Eq. 2 and 3 hold. We will now show that c̃1 < c̃i ∀i |
c∗i > c∗1 + ε. First, since c̃i satisfies Eq. 3, we have that

c̃i > c∗i − (c∗i − c∗1) + ε

Similarly, since c̃1 satisfies Eq. 2, we have that

c̃1 < c∗1 + ε

Substituting, we see that

c̃i > c∗i − (c∗i − c∗1) + ε = c∗1 + ε > c̃1 ∀i | c∗i > c∗1 + ε (1)

Hence even in the worst case, Equations 2 and 3 ensure that
ĉi > ĉ1 ∀i | c∗i > c∗1 + ε, and thus no action sequence i for
which c∗i > c∗1 + ε will be selected and the policy will remain
ε-optimal. Note that action sequences besides i = 1 for which
c∗i ≤ c∗1 + ε costs are unbounded, as it is ok for them to be
significantly underestimated since selecting them still allows
the policy to be ε-optimal.

2) Verifying Theorem 3.1 Experimentally
We now verify the above analysis through a controlled study

of how prediction error affects task performance. To do so, we
will use the true model of an environment and true cost of an
action sequence for planning, but will artificially add noise to
the cost/model predictions to generate model error.

Consider a 2 dimensional navigation task, where the agent
is initialized at s0 = [0.5, 0.5] and is randomly assigned a goal
sg ∈ [0, 1]2. Assume we have access to the underlying model
of the environment, and cost defined as C(st, sg) = ||st−sg||2.
We can run the policy described in Theorem 3.1, specifically
sampling N = 100 action sequences, and selecting the one
with lowest predicted cost, where we consider 2 cases: (1)
predicted cost is using the true model, but with noise α
added to the true cost ĉi = c∗i + α of some subset of action
sequences, and (2) predicted cost is true cost, but with noise
α added to the model predictions st+1 = s̄t+1 + α where
s̄t+1 ∼ p(st+1|st, at) of some subset of action sequences. The
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Fig. 2. Distribution of model errors vs. performance: We validate how the distribution of model errors affects performance on a simple 2D
navigation domain, by adding noise to cost predictions (left) or model predictions (right). We add varying amounts of noise with magnitude
up to ε to the predictions of the 10 lowest true cost trajectories (0-10) to the 10 highest true cost trajectories (90-100). We observe that
adding noise to low true cost trajectories dramatically reduces performance, while adding noise to the high true cost trajectories has no
nearly no impact on performance.

first case relates directly to Theorem 3.1, while the second
case relates to what we can control when training a self-
supervised dynamics model. When selectively adding noise,
we will use uniform noise α ∼ U(−ε, ε). We specifically
study the difference in task performance when adding noise
α to model predictions for the first 10% of trajectories with
lowest true cost, the second 10% lowest true cost trajectories,
etc., up to the 10% of trajectories with highest true cost. Here
“true cost” refers to the cost of the action sequence under
the true model and cost function without noise. For each
noise augmented model we measure the task performance,
specifically the success rate (reaching within 0.1 of the goal),
over 500 random trials.

We see in Figure 2 that for multiple values of noise ε, when
adding noise to the better (lower true cost) trajectories we see a
significant drop in task performance, while when adding noise
to the worse (higher true cost) trajectories task performance
remains relatively unchanged (except for the case with very
large ε). In particular, we notice that when adding noise to
cost predictions, performance scales almost linearly as we add
noise to worse trajectories. Note there is one exception to this
trend: if we add noise only to the top 10% of trajectories,
performance is not optimal, but reasonable because the best
few trajectories will occasionally be assigned a lower cost
under the noise model.

In the case of model error, we see a much steeper increase
in performance, where adding model error to the best 10
trajectories significantly hurts performance, while adding to
the others does not. This is because, in this environment,
noise added to model predictions generally makes the cost
of those predictions worse; so if no noise is added to the
best trajectories, the best action sequence is still likely to
be selected. The exact relationship between model prediction
error and cost prediction error depends on the domain and
task. But, we can see that in both cases in Figure 2, the
conclusion from Theorem 3.1 holds true: accuracy on good
action sequences matters much more than accuracy on bad
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Fig. 3. Distribution of Model Errors (Real Robot Data): We
examine the model error of SVG combined with GAP on unseen,
goal-reaching trajectories from two real robot datasets (the BAIR
Dataset [15] and the RoboNet Dataset [10]). We see that action-
conditioned SVG combined with GAP has lower prediction error on
the goal reaching trajectories than standard action-conditioned SVG.
We observe that the GAP ablation which also conditions on the goals,
but predicts residuals is equally effective in this setting.

action sequences.

3) Additional Real Robot Results
We compare the prediction error of SVG to SVG+GAP on

goal reaching trajectories (Figure 3) from real robot datasets,
namely the BAIR Robot Dataset [15] and the RoboNet Dataset
[10]. We see that action-conditioned SVG combined with
GAP as well as the ablation without residual prediction both
have lower prediction error on goal reaching trajectories than
standard action-conditioned SVG.
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Antonio López, and Vladlen Koltun. End-to-end driving
via conditional imitation learning. 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1–9, 2017.

[10] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,
Bernadette Bucher, Karl Schmeckpeper, Surender Singh,
Sergey Levine, and Chelsea Finn. Robonet: Large-scale
multi-robot learning. ArXiv, abs/1910.11215, 2019.

[11] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-
based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472, 2011.

[12] Emily L. Denton and Rob Fergus. Stochastic video gen-
eration with a learned prior. In International Conference
on Machine Learning, 2018.

[13] Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirinzoni,
Matteo Papini, and Marcello Restelli. Gradient-aware
model-based policy search. ArXiv, abs/1909.04115, 2019.

[14] Alexey Dosovitskiy and Vladlen Koltun. Learning to act
by predicting the future. ArXiv, abs/1611.01779, 2016.

[15] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey
Levine. Self-supervised visual planning with temporal
skip connections. CoRR, abs/1710.05268, 2017.

[16] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie,
Alex X. Lee, and Sergey Levine. Visual foresight:
Model-based deep reinforcement learning for vision-
based robotic control. CoRR, abs/1812.00568, 2018.

[17] Ben Eysenbach, Russ R Salakhutdinov, and Sergey
Levine. Search on the replay buffer: Bridging planning
and reinforcement learning. In Advances in Neural
Information Processing Systems, pages 15246–15257,
2019.

[18] Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese,
and Li Fei-Fei. Dynamics learning with cascaded vari-
ational inference for multi-step manipulation. ArXiv,
abs/1910.13395, 2019.

[19] Amir-Massoud Farahmand, Andre Barreto, and Daniel
Nikovski. Value-Aware Loss Function for Model-based
Reinforcement Learning. In Aarti Singh and Jerry
Zhu, editors, Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research,
pages 1486–1494, Fort Lauderdale, FL, USA, 20–22
Apr 2017. PMLR. URL http://proceedings.mlr.press/v54/
farahmand17a.html.

[20] Chelsea Finn and Sergey Levine. Deep visual foresight
for planning robot motion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages
2786–2793. IEEE, 2017.

[21] Chelsea Finn, Ian J. Goodfellow, and Sergey Levine.
Unsupervised learning for physical interaction through
video prediction. In NIPS, 2016.

[22] Daniel Freeman, David Ha, and Luke Metz. Learning
to predict without looking ahead: World models without
forward prediction. In Advances in Neural Information
Processing Systems, pages 5379–5390, 2019.

[23] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir
Nachum, and Marc G. Bellemare. Deepmdp: Learn-
ing continuous latent space models for representation
learning. CoRR, abs/1906.02736, 2019. URL http:
//arxiv.org/abs/1906.02736.

[24] Karol Gregor, Danilo Jimenez Rezende, Frédéric Besse,
Yan Wu, Hamza Merzic, and Aaron van den Oord.
Shaping belief states with generative environment models
for rl. In NeurIPS, 2019.

[25] David Ha and Jürgen Schmidhuber. World models.
ArXiv, abs/1803.10122, 2018.

[26] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. ArXiv, abs/1801.01290, 2018.

[27] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603,
2019.

[28] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben

https://openreview.net/forum?id=r1HhRfWRZ
https://openreview.net/forum?id=r1HhRfWRZ
https://openreview.net/forum?id=rk49Mg-CW
https://openreview.net/forum?id=rk49Mg-CW
http://proceedings.mlr.press/v54/farahmand17a.html
http://proceedings.mlr.press/v54/farahmand17a.html
http://arxiv.org/abs/1906.02736
http://arxiv.org/abs/1906.02736


Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In
International Conference on Machine Learning, pages
2555–2565, 2019.

[29] Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja,
and Sergey Levine. Dynamical distance learning
for semi-supervised and unsupervised skill discovery.
In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=
H1lmhaVtvr.

[30] Aaron Havens, Yi Ouyang, Prabhat Nagarajan, and Ya-
suhiro Fujita. Learning latent state spaces for plan-
ning through reward prediction, 2020. URL https://
openreview.net/forum?id=ByxJjlHKwr.

[31] Brian Ichter and Marco Pavone. Robot motion planning
in learned latent spaces. IEEE Robotics and Automation
Letters, 4(3):2407–2414, 2019.

[32] Michael Janner, Justin Fu, Marvin Zhang, and Sergey
Levine. When to trust your model: Model-based policy
optimization. In NeurIPS, 2019.

[33] Leslie Pack Kaelbling. Learning to achieve goals. In
IJCAI, pages 1094–1098, 1993.

[34] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian
Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
and Sergey Levine. Qt-opt: Scalable deep reinforce-
ment learning for vision-based robotic manipulation.
arxiv:Preprint, 2018.

[35] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Rus-
sell, and Pieter Abbeel. Learning plannable represen-
tations with causal infogan. In Advances in Neural
Information Processing Systems, pages 8733–8744, 2018.

[36] Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter
Abbeel, Chelsea Finn, and Sergey Levine. Stochastic
adversarial video prediction. CoRR, abs/1804.01523,
2018.

[37] Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and
Sergey Levine. Stochastic latent actor-critic: Deep rein-
forcement learning with a latent variable model. ArXiv,
abs/1907.00953, 2019.

[38] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[39] Kara Liu, Thanard Kurutach, Pieter Abbeel, and Aviv
Tamar. Hallucinative topological memory for zero-
shot visual planning, 2020. URL https://openreview.net/
forum?id=BkgF4kSFPB.

[40] Rowan McAllister and Carl Edward Rasmussen. Improv-
ing pilco with bayesian neural network dynamics models.
2016.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin A. Riedmiller, Andreas K. Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen. King, Dharshan Ku-

maran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learn-
ing. Nature, 518:529–533, 2015.

[42] Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and
Vikash Kumar. Deep dynamics models for learning
dexterous manipulation. ArXiv, abs/1909.11652, 2019.

[43] Ashvin Nair, Shikhar Bahl, Alexander Khazatsky,
Vitchyr Pong, Glen Berseth, and Sergey Levine. Contex-
tual imagined goals for self-supervised robotic learning.
ArXiv, abs/1910.11670, 2019.

[44] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar
Bahl, Steven Lin, and Sergey Levine. Visual reinforce-
ment learning with imagined goals. In Advances in
Neural Information Processing Systems, pages 9191–
9200, 2018.

[45] Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-
supervised learning of long-horizon tasks via visual sub-
goal generation. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/
forum?id=H1gzR2VKDH.

[46] OpenAI. Openai five. https://blog.openai.com/
openai-five/, 2018.

[47] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek
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