
Efficient Adaptation for End-to-End Vision-Based

Robotic Manipulation
Ryan Julian†‡, Benjamin Swanson†, Gaurav S. Sukhatme‡, Sergey Levine†§, Chelsea Finn†¶ and Karol Hausman†

†Google Research, Robotics at Google Team
‡Department of Computer Science, University of Southern California

§Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
¶Department of Computer Science, Stanford University32% → 63% 49% → 66% 50% → 90% 75% → 93% 43% → 98%

https://colordesigner.io/convert/hextohsv (HSV)

86%

Fig. 1: Original robot configuration used for pre-training (left), and adaptation challenges (highlighted in pink) studied in this work (right) with associated
performance improvements (top) obtained using our fine-tuning method.

Abstract—One of the great promises of robot learning systems
is that they will be able to learn from their mistakes and
continuously adapt to ever-changing environments. Despite this
potential, most of the robot learning systems today are deployed
as a fixed policy and they are not being adapted after their
deployment. In this paper, we present a method and empirical
evidence towards a robot learning framework that facilitates
continuous adaption. In particular, we demonstrate how to adapt
vision-based robotic manipulation policies to new variations
by fine-tuning via off-policy reinforcement learning, including
changes in background, object shape and appearance, lighting
conditions, and robot morphology. Further, this adaptation uses
less than 0.2% of the data necessary to learn the task from
scratch. We find that the simple approach of fine-tuning pre-
trained policies leads to substantial performance gains over the
course of fine-tuning, and that pre-training via RL is essential:
training from scratch or adapting from supervised ImageNet
features are both unsuccessful with such small amounts of
data. We also find that these positive results hold in a limited
continual learning setting, in which we repeatedly fine-tune a
single lineage of policies using data from a succession of new
tasks. Our empirical conclusions are consistently supported by
experiments on simulated manipulation tasks, and by 52 unique
fine-tuning experiments on a real robotic grasping system pre-
trained on 580,000 grasps. For video results and an overview
of the methods and experiments in this study, see the project
website at https://ryanjulian.me/continual-fine-tuning.

I. INTRODUCTION

The ability to constantly learn, adapt, and evolve is arguably

one of the most important properties of an intelligent agent

prepared to exist in the real world. Similarly, our robots

should be able to continuously learn and adapt throughout

their lifetime to the ever-changing environments that they

are deployed in. This is a widely recognized requirement.

In fact, there is an entire academic sub-field of lifelong

learning [65] that is interested in the problem of agents that

never stop learning. Despite the wide interest in this ability,

most of the intelligent agents deployed today are not tested

for their adaptation capabilities. Even though techniques such

as reinforcement learning theoretically provide the ability to

perpetually learn from trial and error, this is not how they

are typically evaluated. Instead, the predominant method of

acquiring a new task with reinforcement learning is to initialize

a policy from scratch, collect entirely new data in a stationary

environment, and evaluate a static policy that was trained with

this data.

This static paradigm does not evaluate the robot’s capability

to adapt. It also traps robotic reinforcement learning in the

worst-case regime for sample efficiency: the cost to acquire

a new task is dominated by sample efficiency of the learning

algorithm and the complexity of the task, as reflected in cost of

acquiring diverse task data starting from naı̈ve (e.g. random)

exploration.

Most machine learning models successfully deployed in the

real world, such as those used for computer vision and natural

language processing (NLP) do not live in this regime. For

instance, the predominant method of acquiring a new computer

vision task is to start learning the new task with a pre-trained

model for a related task, acquired from a pre-collected data set,

and fine-tune that model to achieve the new task [11, 24, 10].

This changes the sample efficiency regime of the learning

process from one which is dominated by task complexity to one

that is dominated by task novelty, i.e. the difference between

the new task and the task on which the model was pre-trained.

While a number of works have studied how to use pre-trained

ImageNet [9] features for robotics [68, 25, 34], there are

remarkably few works that study how to adapt motor skills

themselves. Our work attempts to bridge this gap.

We adapt an image-based grasping policy to changes in

background, object shape and appearance, lighting conditions,

and robot morphology and kinematics, while using less than

0.2% of the data necessary to learn the same task from scratch

https://ryanjulian.me/continual-fine-tuning


(see Fig. 1). Our results, supported by simulation and extensive

real-world experiments, indicate that a pre-adaptation policy

acquired for a task using reinforcement learning can be used

to acquire policies for nearby tasks using very little new data

and a simple update procedure. Furthermore, we find that

this approach of adapting pre-trained policies with off-policy

reinforcement learning (RL) leads to substantial improvements

over the course of fine-tuning, and that pre-training via RL is

essential: it significantly outperforms conventional pre-training

techniques using supervised learning on task-agnostic datasets.

We believe this simple adaptation scheme provides a promis-

ing solution for creating a lifelong learning robotic agent,

and show this potential using a simple continual learning

experiment.

To our knowledge, this work is the first to demonstrate

that simple fine-tuning of off-policy reinforcement learning

can successfully adapt to substantial task, robot, and

environment variations which were not present in the

original training distribution (i.e. off-distribution).

II. RELATED WORK

Reinforcement learning is a long-standing approach for

enabling robots to autonomously acquire skills [32] such as

locomotion [33, 64], pushing objects [37, 12], ball-in-cup

manipulation [31], peg insertion [16, 36, 59, 35, 71], throwing

objects [15, 72], and grasping [49, 29]. We particularly focus

on the problem of deep reinforcement learning from raw pixel

observations [36], as it allows us to place little restrictions on

state representation. A number of works have also considered

this problem setting [13, 15, 12, 71, 1, 40]. However, a key

challenge with deep RL methods is that they typically learn

each skill from scratch, disregarding previously-learned skills.

If we hope for robots to generalize to a broad range of real

world environments, this approach is not practical.

We instead consider how we might transfer knowledge

for efficient learning in new conditions [63, 46, 61], a

widely-studied problem particularly outside of the robotics

domain [11, 24, 10, 7, 51]. Prior works in robotics have

considered how we might transfer information from models

trained with supervised learning on ImageNet [9] by fine-

tuning [36, 13, 17, 49] or other means [60, 20]. Our exper-

iments show that transfer from pre-trained conditions is sig-

nificantly more successful than transfer from ImageNet. Other

works have leveraged experience in simulation [56, 66, 57, 62,

45, 55, 48, 22, 19] or representations learned with auxiliary

losses [53, 39, 58] for effective transfer. While successful,

these approaches either require significant engineering effort to

construct an appropriate simulation or significant supervision.

Most relevantly, recent work in model-based RL has used

predictive models for fast transfer to new experimental set-

ups [4, 18], i.e. by fine-tuning predictive models [8], via online

search of a pre-learned representation of the space models,

policies, or high-level skills [5, 6, 30, 38], or by learning

physics simulation parameters from real data [52, 28]. We

show how fine-tuning is successful with a model-free RL

Adapted
Q-function

QT-OptQT-Opt

50%50%

2. Explore 

ℒ

Base
Q-function

Target
Q-function

ℒ

1. Pre-Train

4. Adapt

5. Evaluate

Target Data
<800

Base Data
≈608,000

43%
Success

98% 
Success

3. Initialize

86%
Success

Fig. 2: Schematic of the simple method we test in Section III, using the
conceptual framework we discuss in Appendix B-A. We pre-train a policy
using the old data from the pre-training task, which is then adapted using the
new data from the fine-tuning task.

approach, and show how a state-of-the-art grasping system

can be adapted to new conditions.

Other works have aimed to share and transfer knowledge

across tasks and conditions by simultaneously learning across

multiple goals and tasks [54]. For example, prior works in

model-based RL [12, 67, 43] and in goal-conditioned RL [1,

44, 47, 50, 70] have shared data and representations across

multiple goals and objects. Along a similar vein, prior work

in robotic meta-learning has aimed to learn representations

that can be quickly adapted to new dynamics [41, 2, 42] and

objects [14, 27, 69, 3]. We consider adaptation to a broad

class of changes including dynamics, object classes, and visual

observations, including conditions that shift substantially from

the training conditions, and do not require the full set of

conditions to be represented during the initial training phase.

III. A VERY SIMPLE FINE-TUNING METHOD

We define then evaluate a simple technique for offline fine-

tuning.

Our experiments model an “on the job” adaptation scenario,

where a robot is initially trained to perform a general task (in

our case, grasping diverse objects), and then the conditions of

the task change in a drastic and substantial way as the robot

performs the task, e.g. through the introduction of significantly

brighter lighting, or a peculiar and unexpected type of object.

The robot must adapt to this change quickly in order to recover

a proficient policy. Handling these changes reflects what we

expect to be a common requirement of reinforcement learning

policies deployed in the real world: since an RL policy can

learn from all of the experience that it has collected, there is

no need to separate learning into clearly distinct training and

deployment phases. Instead, it is likely desirable to allow the

policy to simply continue learning “on the job” so as to adapt

to these changes.

A. The Method

We define a very simple fine-tuning procedure for off-policy

RL, as follows (Fig. 2).

First, we (1) pre-train a general grasping policy, as describe

in Appendix A-A and [29]. To fine-tune a policy onto a new



target task, we (2) use the pre-trained policy to collect an

exploration dataset of attempts on the target task; then (3)

initialize the same off-policy reinforcement learning algorithm

which was used for pre-training (QT-Opt, in our case) with the

parameters of the pre-trained policy, and both the target task

and base task datasets1 as the data sources (e.g. replay buffers);

we then (4) update the policy with this training algorithm,

using a reduced learning rate, and sampling training examples

with equal probability from the base and target task datasets,

for some number of update steps. Finally, we (5) evaluate the

fine-tuned policy on the target task.

Our method is offline, i.e. it uses a single dataset of target

task attempts, and requires no robot interaction after initial

dataset collection to compute a fine-tuned policy, which may

then be deployed onto a robot.

B. Evaluating offline fine-tuning for real-world grasping

We now turn our attention to how to evaluating this simple

method’s effectiveness as an adaptation procedure for end-to-

end robot learning, and perhaps continual learning. Our goal is

to determine whether the method is sample efficient, whether

it works over a broad range of possible variations, and to

determine whether it performs better than simpler ways of

acquiring the target tasks.

With this goal in mind, we conduct a large panel of ablation

experiments experiments on a real 7 DoF Kuka arm. These

experiments evaluate the performance of our method across

the diverse range of Challenge Tasks (See Appendix A) and

a continuum of target task dataset sizes, and compare this

performance to two comparison methods.

The experiments are very challenging. The Transparent

Bottles task in particular presents a major challenge to most

grasping systems: the transparent bottles generally confuse

depth-based sensors and, especially in cluttered bins, require

the robot to singulate individual items and position the gripper

in the right orientation for grasping. Although our base policy

uses only RGB images, it is still not able to grasp the glass

bottles reliably, because they differ so much from the objects

it observed during training. However, after fine-tuning with

only 1 hour (100 grasp attempts) of experience, we observe

that the transparent bottles can be picked up with a success

rate of 66%, 20% better than the base policy. Figure 4 shows

how the robot’s view changes for each challenge task. Note

the extreme glare and robot reflections visible in images from

the Harsh Lighting challenge.

For videos of our experimental results, see the project

website.2

a) Collect datasets: First, we collect a dataset of 800

grasp attempts for each of our 5 challenge tasks (see Table III)

plus the base grasping task. We then partitioned each dataset

into 6 tiers of difficulty by number of exploration grasps

(25, 50, 100, 200, 400, and 800 grasp attempts), yielding 36

individual datasets.

1We assume this dataset was saved during training of the base policy
2For video results, see https://ryanjulian.me/continual-fine-tuning

b) Train fine-tuned policies: We train a fine-tuned policy

for each of these 36 datasets using the procedure described

above. We execute the fine-tuning algorithm for 500,000

gradient steps (see Appendix C for more information on how

we chose this number) and use a learning rate of 10−4, which

is 25% of learning rate used for pre-training. This yields 36

fine-tuned policies, each trained with a different combination

of target task and target dataset size. This set of 36 policies

includes 6 policies fine-tuned on data from the base grasping

task, for validation.

c) Train comparisons: To provide points of comparison,

we train two additional policies for each challenge task and

the base grasping task, yielding 12 additional policies.

The first comparison (“Scratch”) is a policy trained using

the aforementioned fine-tuning procedure and an 800-grasp

data set, but using a randomly-initialized Q-function rather

than the Q-function obtained from pre-training. The purpose

of this comparison is to help us assess the contribution of the

pre-trained parameters to the fine-tuning process’ performance.

The second comparison (“ImageNet”) is also trained using

an identical fine-tuning procedure and the 800-grasp dataset,

but uses a modified Q-function architecture in which we

replace the convolutional trunk of the network with that of

the popular ResNet50 architecture [21], initialized with the

weights obtained by training the network to classify images

from the ImageNet dataset [9]. Refer to to Fig. 9 for a

diagram of the unmodified architecture. We initialize the

remaining fully-connected layers with random parameters, and

concatenate the action input features at the end of the CNN

(rather than the adding them in middle of the CNN, as in the

original architecture). Note that in this comparison, the fine-

tuning process still updates all parameters, including those of

the ResNet50 sub-network. The purpose of this comparison is

to provide a comparison to a strong alternative to end-to-end

RL for obtaining pre-training parameters.

d) Evaluate performance: Finally, we evaluate all 48

policies on their target task by deploying them to the robot and

executing 50 or more grasp attempts to calculate the policy’s

final performance. To reduce the variance of our evaluation

statistics, we shuffle the contents of the bin between each

trial by executing a randomly-generated sequence of sweeping

movements with the end-effector.

The full experiment required more than 15,000 grasp at-

tempts and 14 days of real robot time, and was conducted

over approximately one month.

We present a full summary of our results in Table I. Across

the board, we observe substantial benefits arising from fine-

tuning, suggesting that the robot can indeed adapt to drastically

new condition with a modest amount of data: our most data-

intensive experiment uses just 0.2% of the data used train

the base grasping policy to similar performance. Our method

consistently outperforms both the “ImageNet” and “Scratch”

comparison methods. We provide more detailed analysis of

this experiment in the next section.

The experiments are very challenging. For example, the

“Transparent Bottles” task presents a major challenge to most

https://ryanjulian.me/continual-fine-tuning


Challenge Task Original Policy

Ours (exploration grasps) Comparisons

25 50 100 200 400 800 Best (∆) Scratch ImageNet

Checkerboard Backing 50% 67% 48% 71% 47% 89% 90% 90% (+40) 0% 0%
Harsh Lighting 32% 23% 16% 52% 44% 58% 63% 63% (+31) 4% 2%
Extend Gripper 1 cm 75% 93% 67% 80% 51% 90% 69% 93% (+18) 0% 14%
Offset Gripper 10 cm 43% 73% 50% 60% 56% 91% 98% 98% (+55) 37% 47%
Transparent Bottles 49% 46% 43% 65% 65% 58% 66% 66% (+17) 27% 20%
Baseline Grasping Task 86% 98% 81% 84% 78% 93% 89% 98% (+12) 0% 12%

TABLE I: Summary of grasping success rates (N ≥ 50) for the experiments by challenge task, fine-tuning method, and number of exploration grasps. The
experiments “Scratch” and “ResNet 50 + ImageNet” both use 800 exploration grasps and the same update process as the other experiments. “Scratch” starts
the grasping network with randomly-initialized parameters. “ResNet 50 + ImageNet” refers to training a grasping network with an equivalent architecture to
the other experiments, but with its convolutional layers replaced with a ResNet 50 architecture and pre-loaded with ImageNet features; the non-CNN parts of
the network (MLPs for the action inputs and the Q-value output) are randomly-initialized.

86%

50%

Harsh Lighting
Grasping

(Pre-Train)

Adapt

86%

QT-Opt

ℒ

Harsh Light
Q-function

Initialize

QT-Opt

Grasping
Q-function

ℒ

QT-Opt

ℒ

Bottles
Q-function

QT-Opt

ℒ

Extend
Q-function

QT-Opt

ℒ

Offset
Q-function

QT-Opt

ℒ

Checker
Q-function

InitializeInitialize Initialize Initialize

50%50%50% 50% 50% 50%50% 50%50%

Adapt Adapt Adapt AdaptPre-Train

Transparent Bottles
Checkerboard 

Backing
Extend Gripper Offset Gripper

Bottles
800

Checker
800

Harsh Light
800

Extend
800

Offset
800

Grasping
≈608,000

32% 49% 50% 75% 43%

63% 74% 88% 91%

Fig. 3: Flow chart of the continual learning experiment, in which we fine-
tune on a sequence of conditions. Every transition to a new scenario happens
after 800 grasps.

grasping systems: the transparent bottles generally confuse

depth-based sensors and, especially in cluttered bins, require

the robot to singulate individual items and position the gripper

in the right orientation for grasping. Although our base policy

uses only RGB images, it is still not able to grasp the

transparent bottles reliably, because they differ so much from

the objects it observed during training. However, after fine-

tuning with only 1 hour (100 grasp attempts) of experience,

we observe that the transparent bottles can be picked up

with a success rate of 66%, 20% better than the base policy.

Similarly, the “Checkerboard Backing” challenge task asks

the robot to differentiate edges associated with real objects

from edges on an adversarial checkerboard pattern. It never

needed this capability to succeed during pre-training, where

the background is always featureless and grey, and all edges

can be assumed to be associated with a graspable object. After

1 hour (100 grasp attempts) of experience, using our method

the robot can grasp objects on the checkerboard background

with a 71% success rate, 21% better than the base policy, and

this success rate reaches 90% after 8 hours of experience (800

grasp attempts).

C. Evaluating Offline Fine-Tuning for Continual Learning

Now that we have defined and evaluated a simple method

for offline fine-tuning, we evaluate its suitability for use

in continual learning, which could allow us to achieve the

goal of an robot which adapts to ever-changing environments

and tasks. To do so, we define a simple continual learning

challenge as follows (Fig. 3).

As in the fine-tuning experiments, we begin with a base

policy pre-trained for general object grasping. Likewise, we

Challenge Task Continual Learning
∆

Base Single

Harsh Lighting 63% +32% -
Transparent Bottles 74% +25% +8%

Checkerboard Backing 86% +36% −4%

Extend Gripper 1 cm 88% +12% −5%

Offset Gripper 10 cm 91% +44% −7%

TABLE II: Summary of grasping success rates (N ≥ 50) for the continual
learning experiment by challenge task, and comparison to single-step fine-
tuning. “Base” refers to the baseline grasping policy before fine-tuning,
and “Single” refers to the best performance from the single-step fine-tuning
experiment in Table I. Note that because it is the first step of the continual
learning experiment, the policy for “Harsh Lighting” is identical to that of
the 800-grasp variant of the single-step experiment.

also use our fine-tuning method to adapt the base policy to

a target task, in this case “Harsh Lighting.” Not content to

stop there, we use this adapted policy—not the base policy—

as the initialization for another iteration of our fine-tuning

algorithm, this time targeting “Transparent Bottles.” We repeat

this process until we have run out of new tasks, ending at the

task “Offset Gripper 10cm,” at which point we evaluate the

policy on the last task.

We perform this experiment using 800 exploration-grasp

datasets for each Challenge Task from our ablation study

of online fine-tuning with real robots. We summarize the

results in Table II. Note that because it is the first step of the

continual learning experiment, the policy for “Harsh Lighting”

is identical to that of the 800-grasp variant of the single-step

experiment.

Recall that our goal for this experiment is to determine

whether continual fine-tuning incurs a significant performance

penalty compared to the single-step variant, because we are

interested in using this method as a building block for con-

tinual learning algorithms. We find that continual fine-tuning

does not impose a drastic performance penalty compared

to single-step fine-tuning. The continual fine-tuning policies

for the “Checkerboard Backing,” “Extend Gripper 1 cm,” and

“Offset Gripper 10 cm,” challenges succeeded in grasping

between 4% and 7% less often than their single-step fine-

tuning counterparts, whereas the policy for the challenging

“Transparent Bottles” case actually succeeded 8% more often.

These small deltas are within the margin-of-error of our eval-



uation procedure, so we conclude that the effect of continual

fine-tuning on the performance compared to single-step fine-

tuning is very small. This experiment demonstrates that our

method can perform continual adaptation, and may serve as

the basis for a continual end-to-end robot learning method.

IV. CONCLUSION

For robots to be able to operate in unconstrained envi-

ronments, they must be able to continuously adapt to new

situations. Our large-scale study shows that combining off-

policy RL with a very simple fine-tuning procedure is an

effective adaptation method, and this method is capable of

achieving remarkable improvements in robot performance on

new tasks with very little new data. Furthermore, our continual

learning experiment shows that using this simple method in

a continual setting imposes very little performance penalty

compared to the single-step setting. This suggests that the

combination of off-policy RL and fine-tuning can serve as

a building block for future continual learning methods. Our

results comparing supervised-learning-based initialization to

those acquired with our RL-fine-tuning approach highlight a

familiar truism about robotics: that robotic agents must do

more than perceive the world, they must also act in it. The

ability to learn the combination of these two capabilities is

what makes RL well-suited for creating continually-learning

robots.

ACKNOWLEDGMENTS

The authors thank Noah Brown and Ivonne Fajardo for their

superb and unyielding support with real robot experiments.

We also thank Alex Irpan and Eric Jang for their help with

robot learning software, Yevgen Chebotar for his advice on

early revisions of this work and always-insightful discussions,

Dmitry Kalashnikov and Jake Varley for their help with QT-

Opt, and K.R. Zentner for her help with editing and artwork

for this paper.

REFERENCES

[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra

Malik, and Sergey Levine. Learning to poke by poking:

Experiential learning of intuitive physics. In Advances

in neural information processing systems, pages 5074–

5082, 2016.

[2] Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kael-

bling. Modular meta-learning. arXiv preprint

arXiv:1806.10166, 2018.

[3] Alessandro Bonardi, Stephen James, and Andrew J Davi-

son. Learning one-shot imitation from humans without

humans. arXiv preprint arXiv:1911.01103, 2019.

[4] Konstantinos Chatzilygeroudis and Jean-Baptiste Mouret.

Using parameterized black-box priors to scale up model-

based policy search for robotics. In 2018 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

pages 1–9. IEEE, 2018.

[5] Konstantinos Chatzilygeroudis, Vassilis Vassiliades, and

Jean-Baptiste Mouret. Reset-free trial-and-error learning

for robot damage recovery. Robotics and Autonomous

Systems, 100:236–250, 2018.

[6] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-

Baptiste Mouret. Robots that can adapt like animals.

Nature, 521(7553):503–507, 2015.

[7] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong

Yu. Boosting for transfer learning. In Proceedings of

the 24th international conference on Machine learning,

pages 193–200, 2007.

[8] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,

Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,

Sergey Levine, and Chelsea Finn. Robonet: Large-scale

multi-robot learning, 2019.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee,

2009.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[11] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-

man, Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf:

A deep convolutional activation feature for generic visual

recognition. In International conference on machine

learning, pages 647–655, 2014.

[12] Chelsea Finn and Sergey Levine. Deep visual foresight

for planning robot motion. In 2017 IEEE International

Conference on Robotics and Automation (ICRA), pages

2786–2793. IEEE, 2017.

[13] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell,

Sergey Levine, and Pieter Abbeel. Deep spatial au-

toencoders for visuomotor learning. In 2016 IEEE

International Conference on Robotics and Automation

(ICRA), pages 512–519. IEEE, 2016.

[14] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel,

and Sergey Levine. One-shot visual imitation learning via

meta-learning. arXiv preprint arXiv:1709.04905, 2017.

[15] Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and

Mårten Björkman. Deep predictive policy training using

reinforcement learning. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

pages 2351–2358. IEEE, 2017.

[16] Vijaykumar Gullapalli, Judy A Franklin, and Hamid

Benbrahim. Acquiring robot skills via reinforcement

learning. IEEE Control Systems Magazine, 14(1):13–24,

1994.

[17] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Gandhi,

and Lerrel Pinto. Robot learning in homes: Improving

generalization and reducing dataset bias, 2018.

[18] David Ha and Jürgen Schmidhuber. Recurrent world

models facilitate policy evolution. In Advances in Neural

Information Processing Systems, pages 2450–2462, 2018.

[19] Aleksi Hämäläinen, Karol Arndt, Ali Ghadirzadeh, and

Ville Kyrki. Affordance learning for end-to-end visuo-



motor robot control. arXiv preprint arXiv:1903.04053,

2019.

[20] Murtaza Hazara and Ville Kyrki. Transferring general-

izable motor primitives from simulation to real world.

IEEE Robotics and Automation Letters, 4(2):2172–2179,

2019.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[22] Juan Camilo Gamboa Higuera, David Meger, and Gre-

gory Dudek. Adapting learned robotics behaviours

through policy adjustment. In 2017 IEEE International

Conference on Robotics and Automation (ICRA), pages

5837–5843. IEEE, 2017.

[23] Jeremy Howard and Sebastian Ruder. Universal language

model fine-tuning for text classification. arXiv preprint

arXiv:1801.06146, 2018.

[24] Jeremy Howard and Sebastian Ruder. Universal language

model fine-tuning for text classification, 2018.

[25] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros.

What makes imagenet good for transfer learning? arXiv

preprint arXiv:1608.08614, 2016.

[26] Alexander Irpan, Kanishka Rao, Konstantinos Bousmalis,

Chris Harris, Julian Ibarz, and Sergey Levine. Off-policy

evaluation via off-policy classification. In Advances in

Neural Information Processing Systems, pages 5438–

5449, 2019.

[27] Stephen James, Michael Bloesch, and Andrew J Davison.

Task-embedded control networks for few-shot imitation

learning. In Conference on Robot Learning, pages 783–

795, 2018.

[28] Rae Jeong, Jackie Kay, Francesco Romano, Thomas

Lampe, Tom Rothorl, Abbas Abdolmaleki, Tom Erez,

Yuval Tassa, and Francesco Nori. Modelling generalized

forces with reinforcement learning for sim-to-real trans-

fer. arXiv preprint arXiv:1910.09471, 2019.

[29] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian

Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,

Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,

et al. Scalable deep reinforcement learning for vision-

based robotic manipulation. In Conference on Robot

Learning, pages 651–673, 2018.

[30] Rituraj Kaushik, Pierre Desreumaux, and Jean-Baptiste

Mouret. Adaptive prior selection for repertoire-based

online adaptation in robotics. Frontiers in Robotics and

AI, 6:151, 2020.

[31] Jens Kober and Jan R Peters. Policy search for motor

primitives in robotics. In Advances in neural information

processing systems, pages 849–856, 2009.

[32] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforce-

ment learning in robotics: A survey. The International

Journal of Robotics Research, 32(11):1238–1274, 2013.

[33] Nate Kohl and Peter Stone. Machine learning for fast

quadrupedal locomotion. In The Nineteenth National

Conference on Artificial Intelligence, pages 611–616,

July 2004.

[34] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do

better imagenet models transfer better? In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pages 2661–2671, 2019.

[35] Michelle A Lee, Yuke Zhu, Krishnan Srinivasan, Parth

Shah, Silvio Savarese, Li Fei-Fei, Animesh Garg, and

Jeannette Bohg. Making sense of vision and touch:

Self-supervised learning of multimodal representations

for contact-rich tasks. arXiv preprint arXiv:1810.10191,

2018.

[36] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter

Abbeel. End-to-end training of deep visuomotor policies.

The Journal of Machine Learning Research, 17(1):1334–

1373, 2016.

[37] Sridhar Mahadevan and Jonathan Connell. Automatic

programming of behavior-based robots using reinforce-

ment learning. Artificial intelligence, 55(2-3):311–365,

1992.

[38] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval

Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg

Wayne, and Nicolas Heess. Reusable neural skill em-

beddings for vision-guided whole body movement and

object manipulation. arXiv preprint arXiv:1911.06636,

2019.

[39] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert

Soyer, Andrew J Ballard, Andrea Banino, Misha Denil,

Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al.

Learning to navigate in complex environments. arXiv

preprint arXiv:1611.03673, 2016.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,

Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex

Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep rein-

forcement learning. Nature, 518(7540):529–533, 2015.

[41] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S

Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn.

Learning to adapt in dynamic, real-world environments

through meta-reinforcement learning. 2018.

[42] Anusha Nagabandi, Chelsea Finn, and Sergey Levine.

Deep online learning via meta-learning: Continual

adaptation for model-based rl. arXiv preprint

arXiv:1812.07671, 2018.

[43] Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and

Vikash Kumar. Deep dynamics models for learning dex-

terous manipulation. arXiv preprint arXiv:1909.11652,

2019.

[44] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar

Bahl, Steven Lin, and Sergey Levine. Visual reinforce-

ment learning with imagined goals. In Advances in

Neural Information Processing Systems, pages 9191–

9200, 2018.

[45] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek

Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,

Alex Paino, Matthias Plappert, Glenn Powell, Raphael

Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,



Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech

Zaremba, and Lei Zhang. Solving rubik’s cube with a

robot hand, 2019.

[46] Sinno Jialin Pan and Qiang Yang. A survey on transfer

learning. IEEE Transactions on knowledge and data

engineering, 22(10):1345–1359, 2009.

[47] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo,

Pulkit Agrawal, Dian Chen, Fred Shentu, Evan Shel-

hamer, Jitendra Malik, Alexei A. Efros, and Trevor

Darrell. Zero-shot visual imitation. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), Jun 2018. doi: 10.1109/cvprw.

2018.00278. URL http://dx.doi.org/10.1109/CVPRW.

2018.00278.

[48] Xue Bin Peng, Marcin Andrychowicz, Wojciech

Zaremba, and Pieter Abbeel. Sim-to-real transfer of

robotic control with dynamics randomization. In 2018

IEEE international conference on robotics and automa-

tion (ICRA), pages 1–8. IEEE, 2018.

[49] Lerrel Pinto and Abhinav Gupta. Supersizing self-

supervision: Learning to grasp from 50k tries and 700

robot hours. In 2016 IEEE international conference

on robotics and automation (ICRA), pages 3406–3413.

IEEE, 2016.

[50] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin

Nair, Shikhar Bahl, and Sergey Levine. Skew-fit: State-

covering self-supervised reinforcement learning. arXiv

preprint arXiv:1903.03698, 2019.

[51] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin

Packer, and Andrew Y Ng. Self-taught learning: transfer

learning from unlabeled data. In Proceedings of the 24th

international conference on Machine learning, pages

759–766, 2007.

[52] Divyam Rastogi, Ivan Koryakovskiy, and Jens Kober.

Sample-efficient reinforcement learning via difference

models.

[53] Martin A. Riedmiller, Roland Hafner, Thomas Lampe,

Michael Neunert, Jonas Degrave, Tom Van de Wiele,

Volodymyr Mnih, Nicolas Manfred Otto Heess, and

Jost Tobias Springenberg. Learning by playing solving

sparse reward tasks from scratch. In ICML, 2018.

[54] Sebastian Ruder. An overview of multi-task learning in

deep neural networks, 2017.

[55] Andrei A. Rusu, Matej Vecerı́k, Thomas Rothörl, Nicolas

Manfred Otto Heess, Razvan Pascanu, and Raia Hadsell.

Sim-to-real robot learning from pixels with progressive

nets. In CoRL, 2016.

[56] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real

single-image flight without a single real image. Robotics:

Science and Systems XIII, Jul 2017. doi: 10.15607/

rss.2017.xiii.034. URL http://dx.doi.org/10.15607/RSS.

2017.XIII.034.

[57] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and

Sergey Levine. Sim2real viewpoint invariant visual

servoing by recurrent control. In 2018 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR

2018, Salt Lake City, UT, USA, June 18-22, 2018, pages

4691–4699, 2018. doi: 10.1109/CVPR.2018.00493.

URL http://openaccess.thecvf.com/content cvpr 2018/

html/Sadeghi Sim2Real Viewpoint Invariant CVPR

2018 paper.html.

[58] Alexander Sax, Bradley Emi, Amir R. Zamir, Leonidas J.

Guibas, Silvio Savarese, and Jitendra Malik. Mid-

level visual representations improve generalization and

sample efficiency for learning visuomotor policies. In

Conference on Robot Learning, 2019.

[59] Gerrit Schoettler, Ashvin Nair, Jianlan Luo, Shikhar

Bahl, Juan Aparicio Ojea, Eugen Solowjow, and Sergey

Levine. Deep reinforcement learning for industrial inser-

tion tasks with visual inputs and natural reward signals.

In International Conference on Learning Representa-

tions, 2019.

[60] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Un-

supervised perceptual rewards for imitation learning.

Proceedings of Robotics: Science and Systems (RSS),

2017. URL http://arxiv.org/abs/1612.06699.

[61] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang,

Chao Yang, and Chunfang Liu. A survey on deep

transfer learning. Lecture Notes in Computer Science,

page 270279, 2018. ISSN 1611-3349. doi: 10.1007/

978-3-030-01424-7 27. URL http://dx.doi.org/10.1007/

978-3-030-01424-7 27.

[62] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen,

Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent

Vanhoucke. Sim-to-real: Learning agile locomotion for

quadruped robots. Robotics: Science and Systems XIV,

Jun 2018. doi: 10.15607/rss.2018.xiv.010. URL http:

//dx.doi.org/10.15607/RSS.2018.XIV.010.

[63] Matthew E Taylor and Peter Stone. Transfer learning for

reinforcement learning domains: A survey. Journal of

Machine Learning Research, 10(Jul):1633–1685, 2009.

[64] Russell L. Tedrake. Applied optimal control for dynam-

ically stable legged locomotion. Thesis, Massachusetts

Institute of Technology, 2004. URL https://dspace.mit.

edu/handle/1721.1/28742.

[65] Sebastian Thrun. Lifelong Learning Algorithms, page

181209. Kluwer Academic Publishers, USA, 1998. ISBN

0792380479.

[66] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,

Wojciech Zaremba, and Pieter Abbeel. Domain ran-

domization for transferring deep neural networks from

simulation to the real world. 2017 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems

(IROS), Sep 2017. doi: 10.1109/iros.2017.8202133. URL

http://dx.doi.org/10.1109/IROS.2017.8202133.

[67] Lin Yen-Chen, Maria Bauza, and Phillip Isola.

Experience-embedded visual foresight. arXiv preprint

arXiv:1911.05071, 2019.

[68] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod

Lipson. How transferable are features in deep neural

networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

http://dx.doi.org/10.1109/CVPRW.2018.00278
http://dx.doi.org/10.1109/CVPRW.2018.00278
http://dx.doi.org/10.15607/RSS.2017.XIII.034
http://dx.doi.org/10.15607/RSS.2017.XIII.034
http://openaccess.thecvf.com/content_cvpr_2018/html/Sadeghi_Sim2Real_Viewpoint_Invariant_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sadeghi_Sim2Real_Viewpoint_Invariant_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sadeghi_Sim2Real_Viewpoint_Invariant_CVPR_2018_paper.html
http://arxiv.org/abs/1612.06699
http://dx.doi.org/10.1007/978-3-030-01424-7_27
http://dx.doi.org/10.1007/978-3-030-01424-7_27
http://dx.doi.org/10.15607/RSS.2018.XIV.010
http://dx.doi.org/10.15607/RSS.2018.XIV.010
https://dspace.mit.edu/handle/1721.1/28742
https://dspace.mit.edu/handle/1721.1/28742
http://dx.doi.org/10.1109/IROS.2017.8202133


[69] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari,

Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-

shot imitation from observing humans via domain-

adaptive meta-learning. In International Conference on

Learning Representations, 2018.

[70] Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, and Chelsea

Finn. Unsupervised visuomotor control through

distributional planning networks. arXiv preprint

arXiv:1902.05542, 2019.

[71] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee,

Alberto Rodriguez, and Thomas Funkhouser. Learn-

ing synergies between pushing and grasping with self-

supervised deep reinforcement learning. arXiv preprint

arXiv:1803.09956, 2018.

[72] Andy Zeng, Shuran Song, Johnny Lee, Alberto Ro-

driguez, and Thomas Funkhouser. Tossingbot: Learning

to throw arbitrary objects with residual physics. arXiv

preprint arXiv:1903.11239, 2019.

APPENDIX A

THE ROBUSTNESS OF LEARNED POLICIES: A CASE STUDY

To study the problem of adaptation, we utilize a grasping

policy pre-trained with RL, which we evaluate in five different

conditions that were not encountered during pre-training. In

this section, we will describe the pre-training process and test

the robustness of the pre-trained policy to various robot and

environment modifications. We choose these modifications to

reflect changes we believe a learning robot would experience,

and should be expected to a adapt to, when deployed “on

the job” in the real world. In Section III, we will describe a

simple fine-tuning based adaptation process, and evaluate it

using these modifications.

A. Pre-training process

We pre-train the grasping policy, which we refer to as the

“base policy,” using the QT-Opt algorithm in two stages, as

described in [29]. First, we train a Q-function network offline

using data from 580,000 real grasp attempts over a corpus

of 1,000 visually and physically diverse objects. Second, we

continue training this network online3 over the course of

28,000 real grasp attempts on the same corpus of objects.

That is, we use a real robot to collect trials using the current

network, update the network using these new trials, deploy the

updated network to the real robot, and repeat. This procedure

yields a final base policy that achieves 96% accuracy on a set

of previously-unseen test objects. We use a challenging subset

of six of these test objects for most experiments in this work.

On this set, our base model achieves a success rate of 86%

on the baseline grasping task.

B. Robustness of the pre-trained policy

We begin by choosing set of significant modifications to the

robot and environment, which we believe are characteristic of

3Following the example set by [29], we refer this procedure as “online”
rather than “on-policy,” because the policy is still updated by the off-policy
reinforcement learning algorithm

Challenge Task Type Base Policy ∆

Checkerboard Backing Background 50% -36%
Harsh Lighting Lighting conditions 31% -55%
Extend Gripper 1 cm Gripper shape 76% -10%
Offset Gripper 10 cm Robot morphology 47% -39%
Transparent Bottles Unseen objects 49% -37%

TABLE III: Summary of modifications to the robot and envi-

ronment, and their effect on the performance of the base policy.

Changing the background lighting, morphology, and objects

leads to substantial degradation in performance compared to

the original training conditions.

Harsh Lighting Transparent Bottles

Checkerboard BackingExtend Gripper 1cm

Offset Gripper 10cm

Base Grasping

Fig. 4: Views of from the robot camera for each of our six

Challenge Tasks and the base grasping task.

a real-world continual learning scenario. We then evaluate the

performance of the base policy on increasingly-severe versions

of these modifications. This process allows us to assess the

limits of robustness of policies trained using the pre-training

method. Once we find a modification that is sufficiently-severe

to compromise the base policy’s performance in each category,

we use it to define a “Challenge Task” for our study of

adaptation methods.

Next, we describe these challenges and the corresponding

performance of the base policy.

Background: We introduce a black-white 1 inch checker-

board pattern that we glue to the bottom of the robot’s

workspace (see Fig. 1, fourth from left). We observe that

conventional variations in the workspace surface, such as

uniform changes in color or specularity, have no effect on the

base policy’s performance. Introducing an checkerboard pat-

tern often fools the robot into grasping at checkerboard edges

rather than objects. This adversarial modification compromises

the base policy’s performance to 50% (-36% compared to the

base task).

Lighting conditions: We introduce a high-intensity halo-

gen light source parallel with the workspace (see Fig. 1,

second from left), creating a bright spot in the robot’s cam-

era view, and intense light-dark contrasts along the plane

of the workspace. The base policy was trained in standard

indoor lighting conditions, with no exposure to natural light

or significant variation. We observe that mild perturbations



in lighting conditions (i.e. those which can be created by

standard-intensity household lights) have no effect on the base

policy’s performance. Using the very bright halogen light

source has a severe impact, and degrades the base policy’s

performance to 31% (-55% compared to the baseline).

Gripper shape: We extend the parallel gripper attached

to the robot by 1 cm and significantly narrow its width and

compliance in the process (see Fig. 1, fifth from left). This

changes the robot’s kinematics (lengthening the gripper in the

distal direction), while also lowering the relative pose of the

robot with respect to the workspace surface by 1 cm. This

modification compromises the base policy’s performance to

76% (-10% compared to the baseline).

Robot morphology: We translate the gripper laterally by

10 cm (see Fig. 1, far-right). Note that during training this

policy experienced absolutely no variation in robot morphol-

ogy. We observe that translating the gripper laterally by up to

5 cm has no impact on performance. By translating the gripper

laterally by 10 cm (approximately a full gripper or arm link

width), we degrade the base policy’s performance to 47% (-

39% compared to the baseline).

Unseen objects: We introduce completely-transparent plas-

tic beverage bottles (see Fig. 1, third from left) that were

not present in the training set. Based on our experiments,

the system is robust to a broad variety of previously-unseen

objects, as long as they have significant opaque components.

For example, even though there are no drinking bottles in the

training set, we find the system is able to pick up labeled

drink bottles with 98% success rate. Success rates for other

novel, opaque objects are similarly consistent with the baseline

performance on the test set. However, we find that introducing

completely-transparent drink bottles causes the base policy to

often grasp where two bottles are adjacent, i.e. as though it

cannot differentiate which parts of the scene are inside vs

outside a bottle. By introducing completely-transparent plastic

beverage bottles, we are able to compromise the base policy’s

performance to 49% (-37% compared to the baseline).

See Table III for a summary of the modification experi-

ments, and their effect on base policy performance.

APPENDIX B

ASSESSING FINE-TUNING TECHNIQUES FOR END-TO-END

ROBOTIC REINFORCEMENT LEARNING

We propose a conceptual framework for fine-tuning algo-

rithms, and use simulation experiments to assess the suitability

of some algorithm variations for end-to-end robot learning.

“Fine-tuning” refers to a family of transfer learning tech-

niques, in which we seek to acquire a neural network for one

task (which we will refer to as the “target” task) by making

use of some or all of a network trained on a related task (the

“base” task). This is a is a very common technique for quickly

acquiring new tasks in computer vision [11, 25, 34] and natural

language processing [23]. As collecting new robot experience

data is expensive, our goal is to use as little target task

data as possible. In this section, we first describe the general

algorithmic sketch for fine-tuning, then enumerate some of the

most common fine-tuning techniques. In Sections III and C,

we evaluate the suitability of these techniques for end-to-end

robot learning.

A. Fine-Tuning: Conceptual Framework

We can organize fine-tuning for end-to-end reinforcement

learning into four essential steps (Fig. 2). Different fine-tuning

techniques change the details of one of these steps.

1) Pre-training: Pre-train a policy to perform some base

task, which is related to our target task. In the experi-

ments in this work, the base task is always indiscriminate

object grasping. In computer vision and NLP, this step

can often by skipped by making use of one of many

pre-trained and publicly-available state-of-the-art vision

and language models. We hope for a future in which this

is possible in robotics.

2) Exploration: Explore in the new target task, to collect

data for adaptation. In principle, in off-policy reinforce-

ment learning any policy may be used for exploration. In

our study, and what we believe to be most representative

of a real-world continual learning scenario, we always

use the pre-trained policy for exploration.

3) Initialization: Initialize the policy for the target task

using some or all of the weights from the pre-trained

policy. The standard implementation of this step is to

start with the entire pre-trained network. Some tech-

niques may choose to use only a subset of the pre-trained

network (e.g. truncating the last few layers of a CNN).

4) Adaptation: Use the exploration data update the initial-

ized policy to perform the new task. The standard version

of this step continues updating the entire initialized

policy with the same algorithm and hyperparameters

as was used for the pre-training process, but with the

target task data. There are many variations on this step,

including which parts of the network to update, at what

learning rate, with what data, with which optimization

algorithm, whether to add additional network layers, etc.

5) Evaluation: Assess performance of the fine-tuned net-

work on the new task. If this step only happens once, we

refer to such a technique as “offline fine-tuning,” because

the adaptation step never uses data from an updated

policy. If this step happens repeatedly (e.g. exploration

and evaluation are one-and-the-same), and its result is

used for further adaptation to the same target task, we

refer to a technique as “online fine-tuning.” We explore

both variations in our experiments.

Using this fine-tuning framework, we consider several varia-

tions of fine-tuning, and assess their suitability for end-to-end

robotic RL. Notably, we neglect an analysis of pre-training

techniques for fine-tuning reinforcement learning (i.e. (1)),

which has a large and rapidly-growing body of research in the

meta- and multi-task RL communities (see Sec. II). Instead,

we focus on initialization (2) and adaptation (3). All of our

experiments use end-to-end off-policy reinforcement learning

of an indiscriminate object grasping task for their pre-training



0 1000 2000 3000 4000 5000 6000
Exploration Grasps

0

20

40

60

80

100
Su

cc
es

s R
at

e 
(%

)
Grasping Simulation - Adding a Head (online)

Add a new head
Use pre-train head
Base policy

Fig. 5: Comparison of fine-tuning performance for a policy

which uses all base parameters, and a policy which initializes

the head parameters from scratch. Re-initializing parameters

has a negative effect on sample efficiency for fine-tuning.

step. Refer to Section A-A for details on our pre-training

process.

B. Experiments in simulation

We use simulation experiments to evaluate the suitability

of some fine-tuning variations, along the axes we defined in

Section B-A.

1) Adding a new head and other selective initialization

techniques: Selective-initialization techniques start the fine-

tuning process with a policy which has some of its parameters

initialized to random, e.g. a popular variant is to “add a head”

to a pre-trained neural network by omitting its last few layer(s)

from initialization, so that the new head can be trained to

perform on the target task.

Figure 5 portrays a study of partial initialization for online

fine-tuning using a simulated grasping experiment. In this

experiment, the base task is “grasp opaque blocks” and the

target task “grasp semi-transparent blocks,” and the base

policy performance is 98% when trained from scratch on

43,000 grasp attempts. Both fine-tuned policies begin with

low performance, around 15%. After 5000 exploration grasps

(12% of the data used for the base policy), the performance

of the full initialization policy has reached the base policy

performance, while the policy with a new head has barely

reached 30%. This gap shows that the combination of off-

policy RL and selective initialization is unsuitable for sample-

efficient fine-tuning.

Our experiments immediately make apparent the down-

sides of selective initialization for fine-tuning. In particular,

online fine-tuning requires to maintain a policy that can

competently explore the target task at all times, any method

which compromises the performance of such a policy–even

temporarily–has a high risk of failing as a sample-efficient

fine-tuning technique. The resulting performance gap, once

created, is hard to recover from. As a consequence, we find in

simulation experiments that online fine-tuning with selective

0 2000 4000 6000 8000 10000
Exploration Grasps

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

Grasping Simulation - Target Task Data Ratio
1%
24%
44%
71%
99%

Fig. 6: Performance curve for an online fine-tuning simulation

experiment. The base policy is pre-trained to grasp opaque

colored blocks, and the target task is to grasp semi-transparent

blocks. Each curve represents a different fraction of target task

data, and the remaining data is sampled from the base task. In

simulation, the amount of target task data has a straightforward

relationship with sample efficiency.

re-initialization takes a significant fraction of the pre-training

samples to converge to baseline performance, making this

family of fine-tuning methods sample inefficient.

C. Training with a mix of data from the base and target tasks

We experiment with mixing data from the pre-training task

into the fine-tuning process (Fig. 6), and find that in simulation

this has a predictable relationship with sample efficiency:

higher shares of target task data allow the fine-tuning policy

achieve higher performance faster.

Our goal is to design a fine-tuning algorithm for real robots

which might be used for continual learning, and our conclusion

from this brief study is that online fine-tuning is a poor fit for

for this goal. The experiments with selective re-initialization in

particular highlights the challenge of online fine-tuning: it only

allows us to use algorithms which preserve the exploration

ability of the policy at all times. We also believe that offline

fine-tuning is more practical than online fine-tuning, due to

the inherent complexity of placing a robot in the loop of a

reinforcement learning algorithm. If used as part of a continual

learning method, an offline method would also allow a robot

to collect data on a new task piecemeal, and only attempt to

adapt to that new task when it has collected enough data to

be successful.

APPENDIX C

EMPIRICAL ANALYSIS

In this section, we aim to further investigate the efficiency,

performance, and characteristics of our large-scale real-world

adaptation experiments.

A. Performance and sample efficiency of our method

Figure 7 shows the success rates for our method from Table I

against the amount of data used to achieve that success rate



0 50 100 200 400 800
Exploration Grasps

50

60

70

80

90

100

Su
cc

es
s R

at
e 

(%
)

Sample Efficiency
Checkerboard Backing
Offset Gripper 10cm
Transparent Bottles

Fig. 7: Sample efficiency of our fine-tuning method on selected

real-robot challenge tasks.

for selected tasks. The data indicates that our simple offline

fine-tuning method can adapt policies to many new tasks

with performance at or even above the state-of-the-art base

policy, using modest amounts of data. For instance, “Extend

Gripper 1cm” and “Offset Gripper 10cm” both needed only 25

exploration grasps to achieve substantial gains in performance

(+18% and +30%, respectively). All policies attain substantial

performance gains over the base policy by the time they are

exposed to 800 exploration grasps, which is less than 0.2% of

the data necessary to train an equivalently-performing policy

on the base task.

While the general trend is that more exploration data leads

to higher performance, this relationship is not linear. All

methods experience a substantial improvement in performance

after 100 or fewer exploration grasps. However, we observe

that these performance improvements in the very low-data

regime (e.g. ≤ 200 grasp attempts) are also unstable.

B. The downside of offline fine-tuning: deciding when to stop

Our results indicate that offline fine-tuning can train robotic

policies to substantial performance improvements with modest

amounts of data, and that offline methods are not limited by

the need to preserve an always-sufficient exploration policy

as with online methods. However, we identify one significant

drawback to the method compared to online fine-tuning.

A pure offline fine-tuning method has no built-in evaluation

step which would inform us when the robot’s performance on

the target task has stopped improving, and therefore when we

should stop fine-tuning with a fixed set of target task data. This

is a subset of the off-policy evaluation problem [26]. Knowing

when the policy stops improving is important, because fine-

tuning exists in a low-data regime, and repeatedly updating

a neural network model with small amounts of data leads

to overfitting onto that data. Not only does this degrade the

performance on the target task, but also the ability of the

network to adapt to new tasks later (i.e. for continual learning).

We can see this phenomenon in Figure 8 showing a real

robot’s performance on the “Offset Gripper 10cm” target

1063 × 105 5 × 105 7 × 105 3 × 106

Gradient Steps

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
, N

10
)

Forgetting in Off-Policy Fine-Tuning - Offset Gripper 10cm
Fine-tuned policy, 400 exploration grasps
Our experiments (500k)
Scratch policy, 800 exploration grasps
Base policy

Fig. 8: Evaluation performance of a single offline fine-tuning

experiment at different numbers of gradient steps (optimization

epochs). The blue curve is real robot performance on the target

task (Offset Gripper 10cm) when trained using 400 exploration

grasps. The green dotted line is the performance of training

the same policy from scratch (random initialization) using 800

exploration grasps, and the yellow dotted line the performance

of the base policy. The red dotted line portrays the number of

gradient steps we choose to use for our large-scale fine-tuning

study.

task at different numbers of steps into an offline fine-tuning

process that uses 400 exploration grasps. Performance quickly

rises until around 500,000 gradient steps. Past this point, it

precipitously drops and never recovers, dropping below even

the initial performance of the base policy from which it was

trained, as the initialization is being overwritten by overfitting

to the target samples. The point at which overfitting begins

is a function of the initialized model, target dataset, learning

algorithm, and many other factors, and is not necessarily stable

or easily predictable.

For the purposes of our large-scale fine-tuning study, we use

this experiment and several others to determine that 500,000

gradient steps was an acceptable choice for the real-world

experiments, but the variance in the results in Table I and

Figure 7 shows that this choice was not necessarily optimal

for all of our tasks and datasets. We believe one practical a

solution to this problem of a continual learning robot is to use

a mix of offline fine-tuning and online evaluation. The point,

at which performance stops improving represents when the

training process has exhausted the fine-tuning dataset of new

information, and the robot must return to exploring online to

continue improving.

C. Comparing initializing with RL to initializing with super-

vised learning

In order to answer the question whether RL is better

suited for creating a continually-learning robotic agent than

supervised learning, we compare our results to an ImageNet-

pretrained baseline. The ImageNet baseline uses a similar

grasping network where its convolutional layers are replaced



c
o

n
v
1

c
o

n
v
2

c
o

n
v
3

c
o

n
v
4

c
o

n
v
6

c
o

n
v
7

c
o

n
v
8

c
o

n
v
9

c
o

n
v
1
0

c
o

n
v
1
1

c
o

n
v
1
2

c
o

n
v
1
3

c
o

n
v
1
4

c
o

n
v
1
5

c
o

n
v
1
6

fc
0

fc
1

lo
g

it

p
ix

e
ls

Checkerb
oard

 B
ackin

g

Hars
h L

ig
htin

g

Off
set G

rip
per 1

0cm

Exte
nd G

rip
per 1

cm

Tra
nspare

nt B
ottl

es

c
o

n
v
5

fc
g

ra
s
p
1

fc
g

ra
s
p
2

a
c

ti
o

n

e
x

p
. r

e
tu

rn

Fig. 9: Analysis of parameter changes induced by different fine-tuning target tasks. This plot portrays the cosine distance

between the parameters of the pre-trained and fine-tuned networks for our 5 fine-tuning target tasks. The bar heights are

normalized by the magnitude of parameter changes induced in the Q-function network by fine-tuning the baseline grasping

task.

with ResNet 50 architecture and pre-loaded with ImageNet

features. Since the part of the network that process robot’s

state and action inputs cannot be initialized using supervised

learning, we initialize them randomly. As shown in Table I, the

best performing ImageNet-based agent achieves the success

rate of 47% on “Offset Gripper 10cm,” which corresponds

to 4% improvement over the base policy performance. This

result seems to confirm our hypothesis that our RL-based pre-

training is crucial for good subsequent fine-tuning. Note that

we first attempted to fine-tune these ImageNet-based policies

while holding the ImageNet feature layers constant, but this

procedure failed to achieve any non-zero success rate. This

suggests that, unlike adapting computer vision networks to

new visual tasks, adapting end-to-end robot learning to new

sensorimotor tasks may require changing the features used to

represent the problem, and not just the post-processing of said

features.

Figure 9 highlights some of the changes that happen during

the RL-based fine-tuning in greater detail. It demonstrates

the normalized distance in parameter space of a fine-tuned

policy for each of our challenge tasks from its base policy.

While it is unsurprising that primarily-visual challenges such

as “Checkerboard Backing” and “Harsh Lighting” induce large

changes in the parameters of the convolutional parts of the

network, we observe that even ‘Offset Gripper 10cm,” a

purely-morphological change to the robot, induces substantial

changes to the network’s image-processing parameters (e.g.

layers conv2-conv7). We attribute this to the successful agent’s

need for hand-eye coordination to complete the task: offsetting

the gripper not only changes robot morphology, it changes the

location of the robot in its own visual field drastically. In order

to perform effective visual servoing with a new morphology,

both the image and action-processing parts of the network

must be updated.


	Introduction
	Related Work
	A Very Simple Fine-Tuning Method
	The Method
	Evaluating offline fine-tuning for real-world grasping
	Evaluating Offline Fine-Tuning for Continual Learning

	Conclusion
	Appendix A: The Robustness of Learned Policies: A Case Study
	Pre-training process
	Robustness of the pre-trained policy

	Appendix B: Assessing Fine-Tuning Techniques for End-to-End Robotic Reinforcement Learning
	Fine-Tuning: Conceptual Framework
	Experiments in simulation
	Adding a new head and other selective initialization techniques

	Training with a mix of data from the base and target tasks

	Appendix C: Empirical Analysis
	Performance and sample efficiency of our method
	The downside of offline fine-tuning: deciding when to stop
	Comparing initializing with RL to initializing with supervised learning


