APPENDIX A
METHOD OVERVIEW

Fig. A is a pipeline diagram for our method, which com-
prises of cloth region segmentation, grasp selection, and grasp
execution.
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Fig. A: Pipeline for our method. Cloth region segmentation
takes a depth image and outputs segmentation masks for
cloth edges and corners. Grasp selection uses the masks to
compute a grasp point and direction in the camera frame.
Grasp execution transforms the grasp configuration into the
robot frame and executes the grasp.

APPENDIX B
TRAINING DETAILS

The network was implemented in PyTorch [13] and trained
using the Adam optimizer [9]. We augmented the data during
training with random image flips and rotations to improve
robustness. All training was performed on an Ubuntu 16.04
machine with an NVIDIA GTX 1080 Ti GPU, a 2.1 GHz
Intel Xeon CPU, and 32 GB RAM.

Hyperparameters used for training the cloth segmentation
network

o Learning rate: le-05

« Batch size: 64

o Number of rotation augmentations: 32
o Loss: Binary cross-entropy

APPENDIX C
GRASP EXECUTION

This section contains details about calculating grasp execu-
tion given the grasp configuration output from the network.
The configuration (p, «) specifies the grasp point on the cloth
and the direction for the sliding grasp. This configuration is
specified in image coordinates; to transform it into the world
frame, we perform a 2D-to-3D projection using known camera

intrinsics and extrinsics. This provides an intermediate 6D pre-
grasp pose g consisting of the 3D position of the target cloth
point (corresponding to p in 2D), and the 3D orientation of
the end-effector (corresponding to o in 2D). The intermediate
pre-grasp pose g is oriented top-down and rotated about the
z-axis in the world frame. We apply a final transformation
that tilts the grasp pose about the horizontal z-axis by 45-
degrees to obtain a new pre-grasp pose g. This pose allows
one of the fingertips to get under the cloth during the slide
action. This transformation also includes a z-offset to account
for the z-height of the gripper tip lowering due to the rotation.
Finally, we compute offsets to g in the xy plane parallel to
the workspace to get pre-slide and post-slide poses. As shown
in Fig. 4, the sliding grasp policy moves to the pre-slide pose,
translates to the post-slide pose, then pinches to grasp the
cloth.

The sliding grasp policy was implemented for the robot
using off-the-shelf Movelt! software [3]. The default fingertips
of the Weiss gripper were too thick to get under the cloth
during the sliding maneuver, so we 3D-printed and attached
thinner fingertips.

APPENDIX D
EXPERIMENTAL RESULTS

In this section we provide additional explanation for why the
baselines performed poorly, along with an ablation experiment
for our method.

A. Edge Baselines

Fig. B visualizes the different edge grasping methods.

Canny-Depth relies on the intensity of depth gradients to
find cloth edges, but depth gradients occur for both cloth edges
and large folds. Segment-Edge fails due to noisy segmentation;
because the cloth is thin, parts of the cloth can fall within the
inlier threshold of the RANSAC table segmentation, despite
careful parameter tuning. Still, even with a clean segmentation,
grasping at an edge point on the segmentation mask often
results in grasping a cloth fold for our highly crumpled
cloth configurations. Canny-Color uses color gradients to find
edges. It is less affected by noise compared to the depth-
based baselines, as the white cloth stands out from the darker
background of the table, resulting in strong edges. However,
this method is still unable to discriminate between real cloth
edges from folds, resulting in failure in a majority of grasp
attempts.

B. Corner Baselines

The Harris-Depth baseline performs poorly because it looks
for large changes in the gradient in all directions, which could
result in false positives instead of real corners. Most of the
grasp point selections from this baseline were on wrinkles and
folds than on the cloth. The Harris-Color baseline performs
better than depth, possibly because there are fewer false
positives given the white on black input images. White cloth
corners against the darker workspace surface can be easily
detected; however, corners lying on top of the cloth are less



(a) Cloth Pose (for refer-
ence).

(b) Segment-Edge.

(c) Canny-Depth [2].

(d) Canny-Color [2]. (e) Our Method.

Fig. B: Our method correctly identifies most of the apparent edges of the cloth as folds, whereas the other methods fail to
make this distinction. (b)-(e) visualize the output of each method on top of the reference image (a). Note that the color image
is only provided as input to Canny-Color (d); all other methods take the corresponding depth image as input.

TABLE II: Ablations on Grasping Cloth Edges

Method Grasp Success
No-Direction-Prediction 0.2
No-Directional-Uncertainty 0.4

Our Method 0.7 £0.20

1 trial per ablation, 10 grasp attempts in trial

likely to be detected. For our difficult randomly crumpled
cloth configurations, the corners are not always cleanly visible
against the surface, and often lie in configurations that are
difficult to discriminate in 2D.

C. Ablations

We perform ablations on our method to determine the
relative contribution of the different components of our method
to grasp success. Our full method consists of segmenting
cloth regions using a neural network, determining the grasp
direction for all segmented edge/corner pixels using their
nearest segmented inner edge pixels, and selecting a grasp
point with the lowest grasp directional uncertainty.

We perform the following ablations of our method:

o “No-Direction-Prediction” still uses the cloth segmenta-

tion network. However, rather than determining the grasp

direction using the our method, this ablation determines
the grasp direction by fitting a bounding box around the
segmented outer edge pixels and setting the direction to
be the vector pointing to the center of the box. Instead
of using the point with minimum directional uncertainty,
it randomly selects the grasp point from the set of outer
edge pixels.

e “No-Directional-Uncertainty” still uses the cloth segmen-
tation network of as well as our method for determining
the grasp direction. However, rather than computing the
grasp directional uncertainty to choose a grasp point, this
ablation chooses a grasp point randomly.

The results are shown in Table II. The ablations under-
perform the full method, demonstrating that our method for
estimating the grasp direction as well as our method for
estimating directional uncertainty help to choose more robust
grasps. We observe No-Direction-Prediction selecting grasp
directions near-parallel to real edges instead of orthogonally,
because it always chooses directions toward the center of
the segmentation bounding box. The performance of No-
Directional-Uncertainty vs. No-Direction-Prediction provides
evidence that using the inner edge segmentation to determine
the grasp direction improves grasp success. Comparing our
full method with No-Directional-Uncertainty shows that se-
lecting the grasp point with minimal directional uncertainty
outperforms random grasp point selection.



