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Fig. 1: We explore generalizable, perception-to-action robotic manipulation for contact-rich tasks that can automatically handle a category
of objects, despite large intra-category shape variation. Here we demonstrate: (a) wiping a whiteboard using erasers with different shape
and size; (b)-(d) Peg-hole insertion for (b) 0.2 [mm] tight tolerance pegs and holes, (c) LEGO blocks and (d) USB ports. The particular
novelty of these demonstrations is that our method automatically handle objects under significant intra-category shape variation (top row)
without any instance-wise tuning, for each task (a)-(d). The video is on https://sites.google.com/view/kpam2/home.

Abstract— In this paper we explore generalizable, perception-
to-action robotic manipulation for precise, contact-rich tasks. In
particular, we contribute a framework for closed-loop robotic
manipulation that automatically handles a category of objects,
despite potentially unseen object instances and significant intra-
category variations in shape, size and appearance. Previous
approaches typically build a feedback loop on top of a realtime
6-DOF pose estimator. However, representing an object with a
parameterized transformation from a fixed geometric template
does not capture large intra-category shape variation. Hence
we adopt the keypoint-based object representation proposed
in kPAM1 [8] for category-level pick-and-place, and extend
it to closed-loop manipulation policies with contact-rich tasks.
We first augment keypoints with local orientation information.
Using the oriented keypoints, we propose a novel object-centric
action representation in terms of regulating the linear/angular
velocity or force/torque of these oriented keypoints. This for-
mulation is surprisingly versatile – we demonstrate that it
can accomplish contact-rich manipulation tasks that require
precision and dexterity for a category of objects with different
shapes, sizes and appearances, such as peg-hole insertion for
pegs and holes with significant shape variation and tight
clearance. With the proposed object and action representation,
our framework is also agnostic to the robot grasp pose and
initial object configuration, making it flexible for integration
and deployment. The video demonstration and source code are
available on this link.

CSAIL, Massachusetts Institute of Technology, 77 Massachusetts Ave,
Cambridge, USA. Emails: {weigao, russt}@mit.edu.

1kPAM [8] stands for KeyPoint Affordance-based Manipulation.

I. INTRODUCTION

Human can perform precise, reactive and dexterous ma-
nipulation while easily adapting their manipulation skill to
new objects and environments. This remains challenging for
robots despite obvious significance to both industrial and
assistive applications. In this paper, we take a step towards
this goal with emphasis on adaptability: the closed-loop,
perception-to-action manipulation policy should generalize
to a category of objects, with potentially unknown instances
and large intra-category shape variations. Furthermore, the
policy should be able to handle different initial object con-
figurations and robot grasp poses for practical applicability.

While many works address robot grasping of arbitrary
objects [13], [12], these methods are typically limited to
picking up the objects; extending them to other tasks is not
straightforward. Contributions on visuomotor policy learning
exploit neural network policies trained with data-driven al-
gorithms [7], [14], [16], and many interesting manipulation
behaviours emerge from them. However, how to efficiently
generalize the trained policy to different objects, camera
positions, object initial configurations and/or robot grasp
poses remains an active research problem.

On the other hand, several vision-based closed-loop ma-
nipulation pipelines [5], [4], [9] use 6-DOF pose as the
object representation. They build a feedback loop on top of
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Fig. 3: The object representation using peg-hole insertion as
an example. We would like the manipulation policy generalize to
(b) a different peg; and (c) a different robot grasp pose. We adopt
the semantic 3D keypoint proposed in kPAM [8] as a local but
task-specific object representation, as shown in (d). Since the task
depends on the local relative orientation between the peg and hole,
we augment keypoint with orientation information, as if a rigid
coordinate is attached to each keypoint shown in (e).

a real-time pose estimator. However, as detailed in Sec. 4 of
kPAM [8], representing an object with a parameterized pose
defined on a fixed geometric template, as these works do,
may not adequately capture large intra-class shape variations.
Thus, kPAM [8] uses 3D keypoints as the object represen-
tation instead of 6-DOF pose. The action in kPAM [8] is
limited to rigid transformations of the keypoints. Although
this action representation works well for pick-and-place, as
demonstrated in [8], it is not suitable for closed-loop policies
and contact-rich manipulation tasks.

In this paper, we contribute a novel manipulation frame-
work that is capable of precise, contact-rich manipulation for
a category of objects, despite large intra-category variations
in shapes, sizes and appearances. To achieve this, we adopt
and extend the keypoint-based object representation in [8]
proposed for pick-and-place. We first augment keypoints
with local orientation information. Using the oriented key-
point, we propose a novel object-centric action represen-
tation as the linear/angular velocity or force/torque of an
oriented keypoint. This action representation enables closed-
loop policies and contact-rich tasks, despite intra-category
shape and size variations of manipulated objects. Moreover,
our framework is agnostic to the grasp pose and object initial
configuration, enabling flexible integration and deployment.

Another desirable property of our framework is the ex-
tendibility. As shown in Sec. II-B, our framework includes a
perception module and a feedback agent, establishes their in-
terfaces but leaves the room for their actual implementation.
Thus, various existing model-based or data-driven algorithms
for perception and control can potentially be plugged into
our framework and automatically generalize to new objects
and task setups, as long as the proposed object and action
representation are used as their input/output.

Our framework is instantiated and implemented on a
hardware robot. We demonstrate several contact-rich ma-
nipulation tasks that requires precision and dexterity for a
category of objects, such as peg-hole insertion for pegs and
holes with significant shape variations and tight clearance.
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Fig. 4: Overview of the object-centric action representation.
With the oriented keypoint in Fig. 3 (e) as the object representation,
the action can be represented as: (a) the desired linear/angular
velocity of an oriented keypoint; or (b) the desired force/torque
of an oriented keypoint. Note that these two action representations
are agnostic to the robot grasp pose.

II. MANIPULATION FRAMEWORK

A. Concrete Motivating Example

Consider the task of peg-hole insertion, as illustrated in
Fig. 3 (a). We want to come up with a manipulation policy
that automatically generalizes to a different peg in Fig. 3 (b),
and a different robot grasp pose in Fig. 3 (c).

kPAM [8] proposed to represent the object by semantic
3D keypoints. The motivation is: keypoint is well defined
within a category while 6-DOF pose cannot capture large
shape variation (see Sec. 4 of [8] for details). We adopt this
idea and choose two keypoints: the ppeg end that is attached
to the peg and the phole top that is attached to the hole, as
shown in Fig. 3 (d). Similar to kPAM, we assume we have a
keypoint detector that produces these keypoints in real-time.

These keypoints provide the location information. How-
ever, peg-hole insertion also depends on the relative orien-
tation of pegs and holes. Thus, we augment keypoints with
orientation information, as if a rigid coordinate is attached
to each keypoint, as shown in Fig. 3 (e). For the peg-hole
insertion task, we let the z axis of the ppeg end, phole top be the
axis of the peg and hole, respectively. The x axis of ppeg end,
phole top are chosen such that when the x axes of ppeg end and
phole top are aligned the peg can be to insert into the hole.

The coordinate in Fig. 3 (e) is also used to illustrate 6-
DOF pose in the literature. The key difference between the
oriented keypoint and 6-DOF pose is: oriented keypoint is a
local but task-specific characterization of the object geome-
try, while pose with geometric template is global. The choice
of a local object representation is inspired by the observation
that in many manipulation tasks, only a local object part
interacts with the environment and is important for the task.
For instance, the ppeg end keypoint only characterizes a local
object part that will be engaged with the hole, and it does
not imply task-irrelevant geometric details such as the handle
grasped by the robot. This locality enables generalization to
novel objects as the unrelated geometric details are ignored.

As illustrated in Fig. 4, with the oriented keypoint as the
object representation we propose to represent the robot action
as either 1) the desired linear and angular velocity of the
ppeg end keypoint, as shown in Fig. 4 (a); or 2) the desired
force and torque at the ppeg end keypoint, as shown in Fig. 4

2



Closed-Loop Manipulation Policy

Pick-and-Place
(kPAM [11])

Joint Space 
Control 

(Sec. II-E)

Agent
Hand Written

Imitation Learning

iLQG

…

Keypoint Perception
Visual+Kinematic (Sec. III)

External Camera

Motion Capture

…

Fig. 5: Overview of the manipulation framework. The closed-loop policy consists of 1) a perception module that produces oriented
keypoint in real time; 2) an agent with the state and action space shown in Fig. 3 and Fig. 4, respectively; 3) a joint-space controller that
maps agent outputs to joint-space commands. Note that many different implementations of the perception module and agent can be used
within our framework and the resulting pipeline automatically generalize to new objects and task setups. For many applications the objects
are randomly placed initially. In this scenario, we perform a kinematic pick-and-place to move the object to some desired initial condition
(for instance moving the peg right above the hole), from where the closed-loop policy starts operating (see kPAM [8] for details).

(b). Note that these two object-centric action representations
are agnostic to the robot grasp pose, since these actions
are defined only w.r.t the object (not the robot). Under the
assumption of no relative motion between the peg and the
robot gripper (the grasp is tight), these actions can be mapped
to joint space commands, as described in Sec. II-E.

Suppose we have an agent (which can be a hand-written
controller or a neural network policy) using the object and
action representations mentioned above as the input and
output, together with a perception module that produces the
keypoints in real-time and a joint-level controller that maps
the agent output to joint command, then the resulting ma-
nipulation policy would automatically generalize to different
objects and robot grasp poses, for instance the ones in Fig. 3
(a), (b) and (c). Even if the policy doesn’t directly transfer
due to unmodeled factors, it would be a good initialization
for many data-driven or model-based algorithms [6], [11].

B. General Formulation

We can think of a robot as a programmable force/motion
generator [3]. We propose to represent the task-specific
motion profile as the motion of a set of oriented keypoints,
and the force profile as the force/torque w.r.t some keypoints.

Thus, given a category-level manipulation problem we
propose to solve it in the following manner. First the modeler
selects a set of 3D oriented keypoints that capture the
task-specific force/motion profile. Once we have chosen
keypoints, the manipulation framework can be factored into:
1) the perception module that outputs the oriented keypoint
from sensory inputs; 2) the agent that takes the perceived
keypoint as input and produces the desired linear/angular
velocity or force/torque of an oriented keypoint as output;
3) the low-level controller that maps the agent output to
joint-space command. An illustration is shown in Fig. 5. The
framework can be extended with force/torque measurements
and the generalization to different object initial configu-
rations, as shown in Sec. II-C and Sec. II-D. For many
applications, objects are randomly placed initially. In this
case, we perform a kinematic pick-and-place to move the
object to some desired initial configurations, from where the
closed-loop policy starts, using the method in kPAM [8]. To
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Fig. 6: The processing of force/torque measurement in our
formulation. For a wrist-mounted force/torque sensor, its raw
measurements fmeasured and τmeasured vary with the object geometry
and grasp pose. Thus, we propose to transform them to an oriented
keypoint (ppeg end here), as the transformed measurement captures
the task-specific force/torque profile. The closed-loop agent takes
the transformed force/torque measurement as input would general-
ize w.r.t object geometry.

make the overall manipulation operation generalizable, all
these extensions should work for a category of objects.

We stressed that our framework establishes the interfaces
(input/output) of the perception module and closed-loop
agent, but leaves the room for their instantiation. The only
requirement is that for the perception module it should
output oriented keypoints in real time, and for the agent
it should use the state and action space mentioned above.
There are many solutions for both of them. For instance,
in our experiment we combine the wrist-mounted camera
and robot kinematics for keypoint perception. Alternatively,
external cameras or motion capture markers can also be used
for keypoint tracking. Similarly one might explore various
model-based or data-driven controllers as the feedback agent
according to the task in hand. Integrating these perception
module and controllers into our framework would achieve
automatic generalization to new objects and task setups.

C. Force/Torque Measurement

Some robots are equipped with wrist-mounted force/torque
sensors or joint torque sensors. For contact-rich manipulation
tasks, it’s beneficial to use this information as the input of
the agent. However, the raw output from these sensors varies
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with the object geometry and robot grasp pose, as shown in
Fig. 6. As a result, directly feeding these measurements into
the agent does not generalize automatically.

The solution to this problem is to transform the measured
force/torque to the kinematic frame of an oriented keypoint,
as shown in Fig 6. Using the peg-hole insertion as an
example, we can transform the force/torque measurement
from the robot wrist to the coordinate of ppeg end, as if a
“virtual sensor” is mounted at ppeg end. In this way, we can
expect similar force/torque profiles across different objects
and robot grasp pose, as shown in Fig 6.
D. Generalization w.r.t Global Rigid Transformation

Suppose we want to re-target the peg-hole insertion policy
to the hole at a different location. Intuitively, this re-targeting
is essentially a rigid transformation of the manipulation pol-
icy. Can we somehow “apply” this transformation directly?

In our framework, both the agent input (oriented keypoints
and force/torque w.r.t keypoints) and output (linear/angular
velocity or force/torque of an oriented keypoint) are ex-
pressed in 3D space. In other words, we can apply a
rigid transformation to both the agent input and output.
This property provides generalization w.r.t the global rigid
transformation. Before feeding the input to the agent, we can
transform the input from the world frame to some “nominal
frame”. After agent computation, we can transform its output
back to the world frame. The “nominal frame” can be chosen
arbitrary, for instance in the peg-hole insertion task we can
align it with the initial configuration of phole top. Thus, the
global rigid transformation is transparent to the agent.

E. Joint Space Control

The agent output is the desired linear/angular velocity
or force/torque of an oriented keypoint p. An important
observation is: if we assume the object is rigid and grasp
is tight (grasped object is static w.r.t the gripper), then the
object can be regarded as part of the robot and consequently
standard joint-space controllers can be used map these agent
outputs to joint-space commands. This generalizes the “ob-
ject attachment” in collision-free manipulation planning [1].

With this observation, we can implement joint-space con-
troller according to robot interfaces. For instance, if the robot
accepts joint velocity commands, one method to transform
the commanded velocity vp into joint command q̇desired is

q̇desired = argminq̇|Jpq̇− vp|2 + reg(q̇) (1)

where Let Jp be the Jacobian the maps the joint velocity q̇
to the linear/angular velocity of p., reg(q̇) is a regularizer.

As standard joint-space controllers can map the agent
output to joint commands, some more sophisticated con-
trollers can also be used and might provide better tracking
performance. The detailed discussion is omitted as they are
out of our scope.

III. RESULTS

We test our framework on a hardware robot and demon-
strate a variety of contact-rich manipulation tasks, as shown
in Fig. 1. The video demo is on this link.

TABLE I: #Failure/#Trial (Failure Rate) Comparison

Task Kinematic 
Failure Rate Note on Failure

Whiteboard
wiping

10/25 (40%)
Eraser collide into table;
Eraser not aligned with 

whiteboard edge

Printed peg-hole 25/45 (55%) Peg collide into hole;
No overlapping between peg and 
hole (alignment error too large)

LEGO block 9/25  (36%)

USB port 17/20 (85%)

Task Our Method Open-Loop Baseline
Whiteboard wiping 1/25 (4%) 16/20 (80%)

Printed peg-hole 12/45 (26%) 19/20 (95%)

LEGO block 2/25 (8%) 7/20 (35%)

USB port 9/20 (45%) 20/20 (100%)

TABLE II: Summary for 6DOF-Pose Baseline

Task Failure Rate Note on Failure

Whiteboard
wiping

10/25 (40%)
Eraser collide into table;
Eraser not aligned with 

whiteboard edge

Printed peg-hole 25/45 (55%) Peg collide into hole;
No overlapping between peg and 
hole (alignment error too large)

LEGO block 9/25  (36%)

USB port 17/20 (85%)

Task Our Method Open-Loop Baseline
Whiteboard wiping 1/25 (4%) 16/20 (80%)

Printed peg-hole 12/45 (26%) 19/20 (95%)

LEGO block 2/25 (8%) 7/20 (35%)

USB port 9/20 (45%) 20/20 (100%)

A. Perception Implementation

We use robot kinematics to track the oriented keypoint in
real-time and use it as the input of the closed-loop agent.
Suppose we know the oriented keypoint relative to the robot
gripper, then when robot moves we can compute the oriented
keypoint in the world frame using the forward kinematics.

We use a robot wrist-mounted camera to perform object
detection, keypoint detection and grasp planning with the
method in kPAM [8]. Given visual perception results, we
execute robot grasping and compute the keypoints expressed
in the robot gripper frame, using the keypoints in the
world frame (from camera perception) and the robot gripper
pose (from robot kinematics). After grasping, we use robot
kinematics for real-time keypoint tracking and feed the result
into the closed-loop agent, as mentioned above.

B. Experimental Results

Our method is compared with two baselines. The first
baseline simply follows a trajectory of an keypoint without
feedback. This baseline is similar to the policy in kPAM [8],
Form2Fit [15] and KETO [10]. The second baseline uses
6DOF pose as the object representation, and the 6DOF pose
baseline (Fig. 4) in kPAM [2] is used as the pose estimator:
first initialize the alignment with detected keypoints, then
perform ICP fitting between the observed point cloud and
geometric template to get the 6-DOF pose. As shown in
Table. I and Table. II, our approach has a much better
performance than these baselines.

IV. CONCLUSION

We present a novel framework for closed-loop, perception-
to-action manipulation that handles a category of objects,
despite large intra-category shape variation. To achieve this,
we introduce oriented keypoint as an object representation
for manipulation, and purpose a novel action representation
on top of that. Moreover, our framework is agnostic to the
robot grasp pose and object initial configuration, makes it
flexible for integration and deployment. Extensive hardware
experiments demonstrate the effectiveness of our method.
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